Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
150
Добавлен:
13.02.2016
Размер:
734.21 Кб
Скачать

11.2. Некоторые физические свойства и параметры мембран

С появлением электронного микроскопа (см. § 23.2) впервые открылась возможность познакомиться со строением мембран. Тогда обнаружилось, что плазматическая мембрана животных и растительных клеток выглядит как трехслойная структура. На рис. 11.7 изображена электронная микрофотография плазматической мембраны эритроцита. Видно, что мембрана состоит из светлого слоя, соответствующего фосфолипидам бислоя, и двух темных слоев — они представляют собой полярные головки и белки. Толщина мембран в зависимости от вида составляет величину от 4 до 13 нм.

Измерение подвижности молекул мембран и диффузии частиц через мембрану свидетельствует о том, что билипидный слой ведет себя подобно жидкости. В то же время мембрана является упорядоченной структурой. Эти два фактора заставляют думать, чтолипиды в мембране при ее естественном функционировании находятся в жидкокристаллическом состоянии (см. § 8.2). Вязкость липидного бислоя на два порядка больше вязкости воды и соответствует приблизительно вязкости растительного масла. Однако при понижении температуры происходит фазовый переход, в результате которого липиды бислоя

превращаются в гель (твердо-кристаллическое состояние). На рис. 8 схематически представлен процесс «пла­вления» мембранных фосфолипидов при увеличении температуры (слева направо). Очевидно, что при этом меняетсятолщина двойного слоя — в состоянии геля (рис. 11.8, а) она больше, чем в жидкокристаллическом (рис. 11.8, б). При фазовых переходах в бислое могут образовываться каналы, по которым через мембрану способны проходить различные ионы и низкомолекулярные соединения, размер которых не превышает 1—3 нм.

В жидкокристаллическом состоянии отдельная жирнокислотная цепь может принимать много различных конфигураций из-за вращения вокруг С—С связей. При том возможно образование в бислое полостей — «кинков» (от англ, kink — петля). В этих полостях могут находиться различные молекулы, захваченные из пространства вне мембраны. При тепловом движении хвостов липидов происходит движение такого «кинка», а вместе с ним и мо­лекул поперек мембраны или вдоль нее (рис. 11.9).

Проницаемость мембран для различных веществ зависит от поверхностного заряда, который создается заряженными головками липидов, придающими мембране преимущественно отрицательный заряд. Это приводит к тому, что на границе мембрана — вода созда­ется межфазный скачок потенциала (поверхностный потенциал) того же знака, что и заряд на мембране. Величина этого потенциала играет большую роль в процессах связывания ионов мембраной. Помимо поверхностного потенциала, для нормального функциони­рования ферментных и рецепторных мембранных комплексов огромное значение имеет трансмембранный потенциал, природа ко­торого будет рассмотрена ниже. Величина этого потенциала составляет 60—90 мВ (со знаком минус со стороны цитоплазмы). Из-за очень малой толщины мембран напряженность электрического поля в них достигает величины около (6—9) • 106 В/м.

Мембрана по своей структуре напоминает плоский конденсатор, обкладки которого образованы поверхностными белками, а роль диэлектрика выполняет липидный бислой. Емкость такого конденсатора составляет значительную величину (табл. 18). Используя формулу плоского конденсатора, можно оценить диэлектрическую проницаемость  гидрофобной и гидрофильной областей мембран, зная пределы изменения толщины мембраны. Такие оценки дают для фосфолипидной области мембраны значение  = 2,0—2,2, а для гидрофильной части  = = 10—20.

В табл. 18 приведены некоторые физические параметры биологических мембран и в сравнении с ними — те же параметры для искусственно приготовленных липидных бислоев.

Таблица 18. физические свойства биологических мембран и липидных бислоев

Физические параметры

Биологические мембраны

Липидные бислой

Толщина, нм

4—13

4,6—9,0

Электрическое сопротивление, Ом • см2

102— 105

103— 109

Электроемкость, мкФ • см-2

0,5—1,3

0,3—1,3

Потенциал покоя, мВ

20—200

0—140

Показатель преломления

1,55

1,37

Поверхностное натяжение, мН • м-1

0,03—3

0,2—6,0

Коэффициент проницаемости для воды,

10 4 см • с-1

25—33

5—10

Напряжение пробоя, мВ

100

150—200

Плотность липидного бислоя, кг/м3

800

760—900

Эффективный модуль упругости, Па

0,45

0,3—0,5

Мембраны обладают высокой прочностью на разрыв, устойчи­востью и гибкостью. По электроизоляционным свойствам они значительно превосходят многие изоляционные материалы, при­меняемые в технике. Общая площадь мембран в органах и тканях достигает огромных размеров. Так, суммарная площадь клеточ­ных мембран печени крысы, весящей всего 6 г, составляет не­сколько сотен квадратных метров. Клетки, как правило, имеют микроскопические размеры, поэтому отношение их поверхности к объему очень велико. Благодаря этому клетки располагают до­статочной площадью для обеспечения многочисленных процес­сов, протекающих на мембранах. Одним из наиболее важных из них является процесс переноса веществ из клетки и в клетку.

Соседние файлы в папке лекции 1 семестр