Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Большой конспект котлы.doc
Скачиваний:
225
Добавлен:
12.02.2016
Размер:
1.76 Mб
Скачать

5.5 Потеря с физической теплотой шлака

Потеря с физической теплотой шлака Q6(q6) возникает потому, что при сжигании твердого топлива удаляемый из топки шлак имеет высокую температуру. Это относится к топкам с жидким шлакоудалением, для которых q6 = 1 ÷ 2 % , а также к слоевым топкам.

Потеря теплоты , %, определяется

, % (5.20)

где ;

(сt)зл – энтальпия золы, МДж/кг.

Для топок с жидким шлакоудалением температура шлака принимается равной температуре нормального жидкого шлакоудаления, а при твердом шлакоудалении – равной 600 0С.

При камерном сжигании топлива и твердом шлакоудалении потеря q6 учитывается только для топлив с большим содержанием золы .

В котлах имеются потери теплоты на охлаждение различных элементов. Эту потерю определяют

. (5.21)

Рисунок 5.1 - К определению коэффициента избытка воздуха в топке котла

Рисунок 5.2 - К определению температуры уходящих газов

Рисунок 5.3 - Изменение температуры уходящих газов с изменением нагрузки

Рисунок 5.4- Зависимость потери теплоты от химической неполноты сгорания

от объемной плотности тепловыделения

Рисунок 5.5 - Зависимость потери теплоты от наружного охлаждения от

паропроизводительности котла без хвостовых поверхностей (1)

и с хвостовыми (2)

6 Классификация топочных устройств промышленных котлов. Сжигание газа в топках котлов

6.1 Классификация топок

На промышленных предприятиях получение различных теплоносителей осуществляется в котельных установках при сжигании различных органических топлив. Сжигание топлива в котлах и в различных технологических аппаратах осуществляется в топочных устройствах (топках).

По назначению все топки можно разделить на:

- тепловые;

- силовые;

- технологические.

Тепловые топки предназначаются для преобразования химической энергии топлива в физическую теплоту высокотемпературных газов для последующей передачи теплоты этих газов через поверхности нагрева нагреваемой среде. Силовые топки служат для получения продуктов не только с высокой температурой, но и с повышенным давлением. Эти продукты сгорания используются непосредственно для силовых целей в газовых турбинах, соплах реактивных двигателей и т.п.

Тепловые топки подразделяют на слоевые для сжигания кускового топлива и камерные – для сжигания газообразного и жидкого топлива, твердого топлива в пылевидном (мелкодробленом) состоянии, а также для сжигания смеси топлив.

Независимо от схемы организации горения полное время сгорания любого топлива в топке складывается из времени, необходимого для подвода окислителя к топливу (смесеобразования),, времени нагрева компонентов горения до температуры воспламененияи времени, необходимого для протекания самой химической реакции горения, т.е.

. (6.1)

Этапы смешения и нагрева являются здесь физической стадией процесса , а реакций горения – химической.

Если <<, то процесс находится в кинетической области. Полное время сгорания топлива определяется в этом случае скоростью химического процесса. Для кинетической области.

При , т.е. когда время транспортировки окислителя к горючему значительно больше времени, необходимого для осуществления собственно химической реакции горения, процесс находится в диффузионной области для которой.

Если время протекания химической реакции соизмеримо со временем физической стадии (), то процесс находится в промежуточной области и полное время сгорания топливаопределяется скоростью наиболее медленного этапа.

6.2 Конструкция топок

При слоевом процессе свободно лежащее на решетке топливо продувается снизу воздухом. Скорость газовоздушного потока в слое такова, что устойчивость слоя не нарушается, т.е. сила тяжести топливных частиц была больше создаваемой газовым потоком подъемной силы

, (6.2)

где Gч - сила тяжести частицы;

Wс – действительная скорость потока;

п – плотность потока воздуха;

F – сечение частицы;

С – коэффициент сопротивления при внешнем обтекании частицы, зависит от числа Рейнольдса. В слоевых топках размер частиц топлива 20-30 мм и более.

Процесс в кипящем слое. При увеличении скорости дутья создаваемая потоком подъемная сила может достигнуть значения, равного силе тяжести частиц, и устойчивость частиц в слое нарушается: соответствующая этому скорость дутья называется критической. С дальнейшим увеличением интенсивности дутья начинается «кипение» слоя.

В кипящем слое скорость дутья превышает предел устойчивости плотного слоя, однако средняя скорость газа в топке над слоем далека от скорости витания основной массы частиц, т.е. скорости, при которой частицы оказываются взвешенными в потоке.

Частицы топлива совершают в слое возвратно-поступательное движения до тех пор, пока их масса не уменьшится настолько, что они выносятся из слоя газовым потоком и догорают в потоке газов над слоем

, (6.3)

где Wc – действительная скорость потока в слое, м/с;

Wn – действительная скорость потока над слоем, м/с.

При этом Wn< Wc.

Факельный прямоточный процесс. При скорости газового потока в топочной камере, превышающей скорость витания частиц, последние оказываются взвешенными в газовоздушном потоке и вместе с ними начинают перемещаться, сгорая в полете в пределах топочной камеры. Такой топочный процесс называют факельным.

, (закон Стокса) (6.4)

где dч – диаметр частицы, м;

  • – динамическая вязкость газовой среды, Н·с/м2;

Wn – скорость потока в камере, м/с.

Факельным процессом осуществляется сжигание газообразного и жидкого топлив. Газообразное топливо поступает в камеру вместе с воздухом через специальное устройство – горелку. При прохождении через топочную камеру газовоздушная смесь сгорает.

Вихревой (циклонный) процесс:

. (6.5)

При циклонном процессе в отличие от факельного частица циркулирует по организованному обтекаемому контуру столько, сколько необходимо для ее сгорания или выносится в камеру догорания. Циркуляция газового потока в циклонной топке сопровождается организацией на внутренней ее поверхности за счет центробежных сил подвижного слоя, подверженного интенсивному обдуванию. В результате имеют место интенсивное выгорание частиц топлива, а также весьма эффективная сепарация жидкого шлака. В циклонной камере улавливается 80-95% золы топлива. При циклонном процессе время пребывания и интенсивность обдувания частицы газовоздушным потоком увеличивается, поэтому здесь могут быть использованы более крупные частицы.

Скорость выгорания углерода, кг/(м3 ·с)

(6.6)

где Rp – результирующая константа скорости реакции, м/с;

C – концентрация окислителя, кг/м3;

SV – относительная поверхность топлива в единице объема топки, занятого горящим топливом, м23.

Величина Rp зависит от температурного уровня процесса и размеров сжигания частиц.

Показатели работы топочных устройств