
Глава 12. Электрометаллургия феррониобия
12.1. Свойства ниобия и его соединений
Ниобий относится к элементам V группы Периодической системы элементов Д.И.Менделеева. Порядковый номер 41, атомная масса 92,90, электронная конфигурация атома 4d45s1 температура плавления 2470оС, температура кипения 4927оС, энтропия 36,5 Дж/(моль∙K), плотность 8,57 г/см3. Кристаллическая решетка объемно-центрированная кубическая с параметром а = 0,3294 нм. Наиболее устойчивы соединения пятивалентного ниобия, но известны соединения со степенями окисления 4, 3, 2 и 1.
Система
Nb–Fe
(рис.
12.1).
Ниобий с железом образует непрерывные
жидкие растворы, в твердом состоянии -
соединения Nb3Fe2
(tпл
= 1800оС),
Nb19Fe21
(tразл
= 1500oC),
NbFe2
(tпл
= 1655oC).
Сплавы типа феррониобия с 50–70%
(Nb
+ Ta)
имеют температуру плавления (ликвидуса)
1620-1580оС.
Теплота образования NbFe2
равна ∆Н= 61,45 Дж/моль. В бинарной системеNb–Fe
имеются три эвтектики.
Cистема Nb–C. (рис. 12.2). В системах Nb–C образуются термодинамически прочные карбиды. Карбиды Nb2C (5,43–5,83% C) и NbC (11,45% C, tпл = 3613оС, плотность 7,82 г/см3) образуются по перитектическим реакциям. В системе Nb–C со стороны Nb имеется эвтектика Nb + Nb2C (tэв = 2230оС). Температурные зависимости изменения энергии Гиббса реакций образования Nb2C и NbC из элементов описываются следующими выражениями:
2Nb(т) + C(т) = Nb2C(т);
∆G=–192600
+ 4,18Т
Дж/моль;
Nb + C = NbC;
∆G=–130200
+ 1,7Т
Дж/моль.
Стандартная
энтальпия карбида NbC
∆Н=–137,94
кДж/моль, энтропия S
= 35,03 Дж/(мольK),
а карбида Nb2C
Н
=–186,01
кДж/моль, S
= 63,95 Дж/(мольK).
Рис. 12.1. Диаграмма равновесного состояния системы Nb–Fe
Система Nb–Si (рис. 12.3). Ниобий с кремнием образуют силициды типа Me4Si, Me5Si3, MeSi2, термодинамические свойства которых приведены ниже:
Силицид |
Nb4Si |
Nb5Si3 |
NbSi2 |
–∆Н |
87,78 |
652,1 |
125,4 |
Температура плавления, оС |
2580 |
2440 |
2150 |
Система Nb–Al (рис. 12.4). В системе Nb–Al образуется ряд алюминидов ниобия NbAl3, Nb2Al и Nb3Al с высокой температурой плавления: 1605оС NbAl3, 1870оС Nb2Al и ~1960оС Nb3Al. В частной системе NbAl3–Nb2Al имеется эвтектика с температурой 1550оС.
Система Nb–P. Ниобий активно взаимодействует с фосфором, образуя термодинамически прочные фосфиды NbP (25% P) и NbP2 (40% P). Фосфид NbP имеет широкую область гомогенности (NbP0,8-1,2).
Рис.12.2. Диаграмма равновесного состояния системы Nb–C
(Сгр – графит)
Рис. 12.3. Диаграмма равновесного Рис. 12.4. Диаграмма равновесного
cостояния системы Nb–Si состояния системы Nb–Al
Система Nb–O (рис. 12.5). В этой системе образуются стабильные оксиды NbO (14,69% O, tпл = 1945oC), NbO2 (25,62% O, tпл = 1915oC) и Nb2O5 (30% O, tпл = 1510oC), термодинамические свойства которых приведены ниже:
Оксид |
NbO |
NbO2 |
Nb2O5 |
–∆Н |
419,25 |
794,2 |
1897,7 |
S |
45,98 |
54,34 |
137,18 |
Рис. 12.5. Диаграмма равновесного состояния системы Nb–O
Реакции образования оксидов из элементов характеризуются изменением энергии Гиббса, кДж/моль:
2Nb
+
O2
= Nb2O5(ж);
∆G= –1718400 + 324,49Т,
(1785–2740 K);
Nb + O2 = NbO2(ж);
∆G= –712770 + 132,34Т,
(2740–4000 K);
Nb
+
O2
= NbO(ж);
∆G=–356130
+ 58,89Т,
(2740–4000
K).
Ниобатные
системы. Система Nb2O5–CaO
(рис.
12.6).
Известен ряд ниобатов кальция: CaO∙Nb2O3
(tпл
= 1560oC),
2CaO∙Nb2O5
(tпл
= 1567oC)
и 3CaO∙Nb2O5
(перитектически разлагается при 1560оС).
В системе CaO–Nb2O5
имеется три эвтектики (Т= 1362оС;
Т
= 1492оС;
Т
= 1535оС).
Рис. 12.6. Диаграмма равновесного состояния системы
Nb2O3–CaO
Система
Nb2O5–SiO2
(рис. 12.7). Оксиды Nb2O5
и SiO2,
имеющие кислотный характер, химических
соединений не образуют. В области,
богатой Nb2O5,
имеется эвтектика (t= 1448оС),
а в области высоких содержаний SiO2
также имеется эвтектика t
= 1695оС.
Выше 1695оС
существует большая область двух
несмешивающихся жидкостей.
Рис. 12.7. Диаграмма равновесного состояния системы Nb2O5–SiO2
Система Nb2O5–Al2O3 (рис. 12.8). Оксиды Nb2O5 и Al2O3 взаимодействуют с образованием Al2О3NbO, Al2O3∙9Nb2O5 и Al2O3∙25Nb2O5.
Рис. 12.8. Диаграмма равновесного состояния системы Nb2O5–Al2O3