
- •Revision History
- •1.1 Features
- •2 Introduction
- •2.1 Description
- •2.2 Pin Assignments
- •2.2.1 Ball Grid Array (GZZ and ZZZ)
- •2.2.3 Signal Descriptions
- •3 Functional Overview
- •3.1 Memory
- •3.1.3 Instruction Cache
- •3.1.4 Memory Map
- •3.1.5 Boot Configuration
- •3.2 Peripherals
- •3.3 Configurable External Ports and Signals
- •3.3.1 Parallel Port Mux
- •3.3.2 Host Port Mux
- •3.3.3 Serial Port 2 Mux
- •3.3.4 External Bus Selection Register (XBSR)
- •3.4 Configuration Examples
- •3.5 Timers
- •3.5.1 Timer Interrupts
- •3.5.2 Timer Pins
- •3.5.3 Timer Signal Selection Register (TSSR)
- •3.6 Universal Asynchronous Receiver/Transmitter (UART)
- •3.9 Direct Memory Access (DMA) Controller
- •3.9.1 DMA Channel 0 Control Register (DMA_CCR0)
- •3.10 System Clock Generator
- •3.10.1 Input Clock Source
- •3.10.2 Clock Groups
- •3.10.3 EMIF Input Clock Selection
- •3.10.4 Changing the Clock Group Frequencies
- •3.10.5 PLL Control Registers
- •3.10.6 Reset Sequence
- •3.11 Idle Control
- •3.11.1 Clock Domains
- •3.11.2 IDLE Procedures
- •3.11.3 Module Behavior at Entering IDLE State
- •3.11.4 Wake-Up Procedure
- •3.11.5 Auto-Wakeup/Idle Function for McBSP and DMA
- •3.11.6 Clock State of Multiplexed Modules
- •3.11.7 IDLE Control and Status Registers
- •3.12 General-Purpose I/O (GPIO)
- •3.13 External Bus Control Register
- •3.13.1 External Bus Control Register (XBCR)
- •3.14 Internal Ports and System Registers
- •3.14.1 XPORT Interface
- •3.14.2 DPORT Interface
- •3.14.3 IPORT Interface
- •3.14.4 System Configuration Register (CONFIG)
- •3.15 CPU Memory-Mapped Registers
- •3.16 Peripheral Registers
- •3.17 Interrupts
- •3.17.1 IFR and IER Registers
- •3.17.2 Interrupt Timing
- •3.17.3 Interrupt Acknowledge
- •3.18 Notice Concerning TCK
- •4 Support
- •4.1 Notices Concerning JTAG (IEEE 1149.1) Boundary Scan Test Capability
- •4.1.1 Initialization Requirements for Boundary Scan Test
- •4.1.2 Boundary Scan Description Language (BSDL) Model
- •4.2 Documentation Support
- •5 Specifications
- •5.1 Electrical Specifications
- •5.3 Recommended Operating Conditions
- •5.5 Timing Parameter Symbology
- •5.6 Clock Options
- •5.6.1 Internal System Oscillator With External Crystal
- •5.6.2 Layout Considerations
- •5.6.3 Clock Generation in Bypass Mode (APLL Disabled)
- •5.6.4 Clock Generation in Lock Mode (APLL Synthesis Enabled)
- •5.6.5 EMIF Clock Options
- •5.7 Memory Timings
- •5.7.1 Asynchronous Memory Timings
- •5.7.2 Programmable Synchronous Interface Timings
- •5.7.3 Synchronous DRAM Timings
- •5.8 HOLD/HOLDA Timings
- •5.9 Reset Timings
- •5.10 External Interrupt and Interrupt Acknowledge (IACK) Timings
- •5.11 XF Timings
- •5.12 General-Purpose Input/Output (GPIOx) Timings
- •5.13 Parallel General-Purpose Input/Output (PGPIOx) Timings
- •5.14 TIM0/TIM1/WDTOUT Timings
- •5.14.1 TIM0/TIM1/WDTOUT Timer Pin Timings
- •5.14.3 TIM0/TIM1/WDTOUT Interrupt Timings
- •5.15 Multichannel Buffered Serial Port (McBSP) Timings
- •5.15.1 McBSP Transmit and Receive Timings
- •5.15.3 McBSP as SPI Master or Slave Timings
- •5.16 Host-Port Interface Timings
- •5.16.1 HPI Read and Write Timings
- •5.16.3 HPI.HAS Interrupt Timings
- •5.17 Inter-Integrated Circuit (I2C) Timings
- •5.18 Universal Asynchronous Receiver/Transmitter (UART) Timings
- •6 Mechanical Data
- •6.1 Package Thermal Resistance Characteristics
- •6.2 Packaging Information

TMS320VC5502
Fixed-Point Digital Signal Processor
www.ti.com
SPRS166J –APRIL 2001 –REVISED AUGUST 2006
5.16.3HPI.HAS Interrupt Timings
Table 5-47 assumes testing over recommended operating conditions (see Figure 5-46).
Table 5-47. HPI.HAS Interrupt Timing Requirements(1)
|
|
|
|
|
|
VC5502-200 |
|
NO. |
|
|
|
|
|
VC5502-300 |
UNIT |
|
|
|
|
|
|
MIN MAX |
|
H31 |
t |
su(HASL-COH) |
Setup time, HPI.HAS low(2) |
before CLKOUT rising edge |
5 |
ns |
|
|
|
|
|
|
|
|
|
H32 |
t |
h(COH-HASL) |
Hold time, HPI.HAS low(2) |
after CLKOUT rising edge |
0 |
ns |
|
H33 |
t |
w(HASL) |
Pulse width, HPI.HAS low(2) |
P(3) |
ns |
||
|
|
|
|
|
|
|
(1)In this case, CLKOUT reflects SYSCLK1. The CLKOUT Selection Register (CLKOUTSR) can be programmed to select SYSCLK1 as CLKOUT.
(2)An interrupt can be triggered by setting the HPI.HAS signal high or low, depending on the setting of the HAS bit in the General-Purpose I/O Interrupt Control Register 2 (HPGPIOINT2). Refer to the TMS320VC5501/5502 DSP Host Port Interface (HPI) Reference Guide
(literature number SPRU620) for more information on the interrupt capability of the HPI.HAS signal.
(3)P = (Divider1 Ratio)/(CPU Clock Frequency) in ns. For example, when running parts at 300 MHz with the fast peripheral domain at 1/2 the CPU clock frequency, use P = 2/300 MHz = 6.66 ns.
CLKOUT
H31
H32
H33
HPI.HAS
Figure 5-46. HPI.HAS Interrupt Timings
Submit Documentation Feedback |
Specifications |
179 |