
- •Міністерство освіти і науки україни кіровоградський національний технічний університет нарисна геометрія
- •Кіровоград 2004
- •П е р е д м о в а
- •Прийнята система скорочень і позначень
- •2. Лінії
- •3. Площини і поверхні
- •4. Кути
- •5. Натуральні величини, довжина, відстань
- •Л е к ц і я 1 м е т о д п р о е к ц і й. К о м п л е к с н е к р е с л е н н я т о ч к и
- •1.1. Предмет і метод нарисної геометрії
- •Центральне і паралельне проекціювання. Властивості проекцій
- •Властивості паралельних проекцій
- •1.3. Двокартинне комплексне креслення точки
- •1.4. Проекції точки на три площини
- •1.5. Ортогональні проекції і система прямокутних координат
- •1.6. Конкуруючі точки
- •1.7. Точка в квадрантах і октантах простору
- •Запитання для самоперевірки
- •2.2. Точка на прямій. Взаємне положення точки і прямої
- •Рис 2.11 Рис. 2.12
- •2.3. Сліди прямої
- •2.4. Визначення натуральної величини відрізка прямої і кутів його нахилу до площин проекцій
- •2.5. Взаємне положення двох прямих
- •Запитання для самоперевірки
- •Л е к ц і я 3 к о м п л е к с н е к р е с л е н н я п л о щ и н и
- •3.1. Способи зображення площини на комплексному кресленні
- •3.2. Сліди площини
- •3.3. Положення площини в просторі відносно площин проекцій
- •3.4. Прямі і точки, що лежать у площині
- •3.5. Головні лінії площини
- •Запитання для самоперевірки
- •Л е к ц і я 4 взаємне положення прямих і площин
- •Запитання для самоперевірки
- •Л е к ц і я 5 п е р п е н д и к у л я р н і с т ь
- •5.1. Теорема про проектування прямого кута
- •5.2. Взаємна перпендикулярність прямої і площини
- •5.3. Взаємна перпендикулярність двох площин
- •5.4. Взаємна перпендикулярність двох прямих
- •5.5. Визначення кута нахилу площини до площини проекцій
- •Запитання для самоперевірки
- •Л е к ц і я 6 с п о с о б и п е р е т в о р е н н я к о м п л е к с н о г о к р е с л е н н я
- •6.1. Загальні положення
- •6.2. Спосіб заміни площин проекцій
- •6.3. Спосіб плоско-паралельного переміщення
- •Запитання для самоперевірки
- •Л е к ц і я 7 с п о с о б и п е р е т в о р е н н я к о м п л е к с н о г о к р е с л е н н я
- •7.1. Спосіб обертання навколо проектуючої прямої
- •7.2. Обертання навколо лінії рівня (спосіб суміщення)
- •Запитання для самоперевірки
- •Л е к ц і я 8 м н о г о г р а н н и к и
- •8.1. Побудова проекцій многогранників
- •8.2. Переріз многогранника площиною
- •8.3. Перетин многогранника з прямою
- •Запитання для самоперевірки
- •Лекція 9 криві лінії
- •9.1. Способи утворення кривих ліній
- •9.2. Класифікація кривих ліній
- •9.3. Плоскі криві лінії
- •9.4. Проекції кола, яке лежить у площині
- •Б) в проектуючій площині
- •В) в площині загального положення
- •9.5. Просторові криві лінії
- •Циліндрична гвинтова лінія
- •Конічна гвинтова лінія
- •Запитання для самоперевірки
- •Лекція 10 поверхні
- •10.1. Способи утворення поверхонь
- •10.3. Лінійчаті поверхні
- •3). Лінійчаті поверхні з площиною паралелізму.
- •10.5. Поверхні паралельного переносу
- •10.6. Гвинтові поверхні
- •Запитання для самоперевірки
- •Лекція 11 переріз кривої поверхні площиною
- •11.1. Переріз кривої поверхні площиною
- •11.2. Види конічних перерізів. Переріз конуса площиною
- •Запитання для самоперевірки
- •Лекція 12 перетин прямої лінії з поверхнею
- •12.1. Перетин прямої лінії з поверхнею
- •12.2. Пряма та площина, дотичні до поверхні. Нормаль до поверхні
- •Запитання для самоперевірки
- •Лекція 13 взаємний перетин поверхонь
- •13.1. Побудова лінії перетину поверхонь (загальний випадок)
- •13.2. Перетин многогранних поверхонь
- •13.3. Перетин кривої поверхні з поверхнею многогранника
- •13.4. Взаємний перетин кривих поверхонь. Посередник площина рівня (загальний випадок)
- •Запитання для самоперевірки
- •Лекція 14 взаємний перетин поверхонь
- •14.1. Взаємний перетин поверхонь. Посередник - площина загального положення
- •Запитання для самоперевірки
- •Лекція 15 взаємний перетин поверхонь
- •15.1. Побудова лінії перетину поверхонь за допомогою січних сфер
- •15.2. Спосіб концентричних сфер
- •15.3. Спосіб ексцентричних сфер
- •15.4. Перетин кривих поверхонь другого порядку по плоских кривих
- •Запитання для самоперевірки
- •16.2. Розгортка многогранних поверхонь
- •16.3. Розгортка лінійчатих поверхонь
- •. Умовна розгортка поверхонь
- •Запитання для самоперевірки
- •Лекція 17 аксонометричні проекції
- •17.1. Загальні визначення і види аксонометричних проекцій
- •Теорема Польке
- •17.3. Трикутник слідів і його властивості
- •З цих прямокутних трикутників можна записати:
- •Прямокутні аксонометричні проекції
- •17.5. Коло в прямокутній аксонометричній проекції
- •17.6. Косокутні аксонометричні проекції
- •Запитання для самоперевірки
- •Список рекомендованої літератури
- •Питання до екзамену
15.3. Спосіб ексцентричних сфер
Спосіб ексцентричних сфер може бути використаний для побудови лінії перетину двох поверхонь, які мають спільну площину симетрії. При цьому кожна поверхня повинна мати кругові перерізи. Як і у способі концентричних сфер, площина симетрії повинна бути паралельною одній із площин проекцій, але центри січних сфер не збігаються в одній точці, а знаходяться на спільній прямій - осі однієї з поверхонь, що перетинаються.
Приклад. Побудувати фронтальну проекцію лінії перетину конуса з частиною тора (рис. 15.3).
Дві точки - найвища та найнижча - визначаються безпосередньо на перетині контурної твірної тора з контурними твірними конуса. Це точки А і В.
Переріжемо поверхню кільця фронтально-проектуючою площиною Δ, що проходить через вісь тора. Ця площина переріже поверхню тора по колу, фронтальна проекція якого - відрізок 1222. Це ж саме коло може бути отримане, якщо поверхню кільця перерізати ексцентричними сферами, центри яких розміщені на перпендикулярі, проведеному через центр кола 1-2 до площини Δ.
Для того, щоб допоміжна сфера перерізала по колу і поверхню конуса обертання, необхідно щоб її центр належав осі конуса. Тому за центр допоміжної сфери слід взяти точку перетину перпендикуляра з віссю конуса. У цьому випадку сфера, радіус якої дорівнює відстані від її центра до точки 1 (або 2) переріже обидві поверхні по колах. Коло 3-4, по якому ця сфера перетинає конус, є паралеллю конуса.
Кола 1-2 і 3-4 перетинаються в точках D, D (D2, D2), які є спільними для двох заданих поверхонь.
Аналогічно,
за допомогою серії фронтально-проектуючих
площин (
і т.п.), що перетинають поверхню тора
по колах і проводяться між крайніми
точками А і В, будуємо достатню кількість
довільних точок шуканої лінії перетину:
С, С
(С2,
С2)
і т.п
Рис. 15.3
15.4. Перетин кривих поверхонь другого порядку по плоских кривих
При взаємному перетині двох кривих поверхонь другого порядку можливі випадки, коли просторова крива четвертого порядку взаємного перетину двох поверхонь розпадається на дві плоскі криві другого.
Теорема Монжа. Якщо дві поверхні другого порядку описані навколо третьої поверхні другого порядку або вписані в неї, то лінія їх перетину розпадається на дві криві другого порядку, площини яких проходять через пряму, яка з'єднує точки перетину ліній дотику.
Практичне використання теореми можливе у тому випадку, коли дві поверхні обертання другого порядку можуть бути описані навколо сфери або вписані в неї (рис. 15.4).
Рис.
15.4
Рис. 15.5 дає уяву про те, як можна визначити лінії перетину двох конічних поверхонь і , описаних навколо сфери . Поверхня дотикається до сфери по колу, фронтальна проекція якого 1222, а поверхня - по колу, яке проектується в 3242. Точки перетину цих кіл А і В є точками дотику поверхонь і .
Відповідно
теоремі Монжа площини кривих 1
і 2
повинні
проходити через пряму АВ. Оскільки
АВП2,
то площини
1
і
2
- фронтально-проектуючі, а криві 1
і 2
проектуються
у відрізки С2D2
і
E2F2.
Наведені на рис. 15.5 конічні поверхні і перетинаються по двох кривих, одна з яких 1 - еліпс, а друга 2 - парабола (див. рис. 11.3).
Рис. 15.5