
- •Міністерство освіти і науки україни кіровоградський національний технічний університет нарисна геометрія
- •Кіровоград 2004
- •П е р е д м о в а
- •Прийнята система скорочень і позначень
- •2. Лінії
- •3. Площини і поверхні
- •4. Кути
- •5. Натуральні величини, довжина, відстань
- •Л е к ц і я 1 м е т о д п р о е к ц і й. К о м п л е к с н е к р е с л е н н я т о ч к и
- •1.1. Предмет і метод нарисної геометрії
- •Центральне і паралельне проекціювання. Властивості проекцій
- •Властивості паралельних проекцій
- •1.3. Двокартинне комплексне креслення точки
- •1.4. Проекції точки на три площини
- •1.5. Ортогональні проекції і система прямокутних координат
- •1.6. Конкуруючі точки
- •1.7. Точка в квадрантах і октантах простору
- •Запитання для самоперевірки
- •2.2. Точка на прямій. Взаємне положення точки і прямої
- •Рис 2.11 Рис. 2.12
- •2.3. Сліди прямої
- •2.4. Визначення натуральної величини відрізка прямої і кутів його нахилу до площин проекцій
- •2.5. Взаємне положення двох прямих
- •Запитання для самоперевірки
- •Л е к ц і я 3 к о м п л е к с н е к р е с л е н н я п л о щ и н и
- •3.1. Способи зображення площини на комплексному кресленні
- •3.2. Сліди площини
- •3.3. Положення площини в просторі відносно площин проекцій
- •3.4. Прямі і точки, що лежать у площині
- •3.5. Головні лінії площини
- •Запитання для самоперевірки
- •Л е к ц і я 4 взаємне положення прямих і площин
- •Запитання для самоперевірки
- •Л е к ц і я 5 п е р п е н д и к у л я р н і с т ь
- •5.1. Теорема про проектування прямого кута
- •5.2. Взаємна перпендикулярність прямої і площини
- •5.3. Взаємна перпендикулярність двох площин
- •5.4. Взаємна перпендикулярність двох прямих
- •5.5. Визначення кута нахилу площини до площини проекцій
- •Запитання для самоперевірки
- •Л е к ц і я 6 с п о с о б и п е р е т в о р е н н я к о м п л е к с н о г о к р е с л е н н я
- •6.1. Загальні положення
- •6.2. Спосіб заміни площин проекцій
- •6.3. Спосіб плоско-паралельного переміщення
- •Запитання для самоперевірки
- •Л е к ц і я 7 с п о с о б и п е р е т в о р е н н я к о м п л е к с н о г о к р е с л е н н я
- •7.1. Спосіб обертання навколо проектуючої прямої
- •7.2. Обертання навколо лінії рівня (спосіб суміщення)
- •Запитання для самоперевірки
- •Л е к ц і я 8 м н о г о г р а н н и к и
- •8.1. Побудова проекцій многогранників
- •8.2. Переріз многогранника площиною
- •8.3. Перетин многогранника з прямою
- •Запитання для самоперевірки
- •Лекція 9 криві лінії
- •9.1. Способи утворення кривих ліній
- •9.2. Класифікація кривих ліній
- •9.3. Плоскі криві лінії
- •9.4. Проекції кола, яке лежить у площині
- •Б) в проектуючій площині
- •В) в площині загального положення
- •9.5. Просторові криві лінії
- •Циліндрична гвинтова лінія
- •Конічна гвинтова лінія
- •Запитання для самоперевірки
- •Лекція 10 поверхні
- •10.1. Способи утворення поверхонь
- •10.3. Лінійчаті поверхні
- •3). Лінійчаті поверхні з площиною паралелізму.
- •10.5. Поверхні паралельного переносу
- •10.6. Гвинтові поверхні
- •Запитання для самоперевірки
- •Лекція 11 переріз кривої поверхні площиною
- •11.1. Переріз кривої поверхні площиною
- •11.2. Види конічних перерізів. Переріз конуса площиною
- •Запитання для самоперевірки
- •Лекція 12 перетин прямої лінії з поверхнею
- •12.1. Перетин прямої лінії з поверхнею
- •12.2. Пряма та площина, дотичні до поверхні. Нормаль до поверхні
- •Запитання для самоперевірки
- •Лекція 13 взаємний перетин поверхонь
- •13.1. Побудова лінії перетину поверхонь (загальний випадок)
- •13.2. Перетин многогранних поверхонь
- •13.3. Перетин кривої поверхні з поверхнею многогранника
- •13.4. Взаємний перетин кривих поверхонь. Посередник площина рівня (загальний випадок)
- •Запитання для самоперевірки
- •Лекція 14 взаємний перетин поверхонь
- •14.1. Взаємний перетин поверхонь. Посередник - площина загального положення
- •Запитання для самоперевірки
- •Лекція 15 взаємний перетин поверхонь
- •15.1. Побудова лінії перетину поверхонь за допомогою січних сфер
- •15.2. Спосіб концентричних сфер
- •15.3. Спосіб ексцентричних сфер
- •15.4. Перетин кривих поверхонь другого порядку по плоских кривих
- •Запитання для самоперевірки
- •16.2. Розгортка многогранних поверхонь
- •16.3. Розгортка лінійчатих поверхонь
- •. Умовна розгортка поверхонь
- •Запитання для самоперевірки
- •Лекція 17 аксонометричні проекції
- •17.1. Загальні визначення і види аксонометричних проекцій
- •Теорема Польке
- •17.3. Трикутник слідів і його властивості
- •З цих прямокутних трикутників можна записати:
- •Прямокутні аксонометричні проекції
- •17.5. Коло в прямокутній аксонометричній проекції
- •17.6. Косокутні аксонометричні проекції
- •Запитання для самоперевірки
- •Список рекомендованої літератури
- •Питання до екзамену
3.4. Прямі і точки, що лежать у площині
Пряма належить
площині,
якщо вона проходить через дві точки, що
належать цій площині, або через одну її
точку паралельно іншій прямій, проведеній
на площині.
Приклад 1: Задана горизонтальна проекція прямої (1), яка належить площині (АВС) . Побувати відсутню фронтальну проекцію прямої (2) (рис. 3.8).
Приклад 2:
Задано горизонтальну проекцію прямої
k(k1)
і фронтальну проекцію прямої m(m2).
Прямі k i m належать площині (h0f0).
Побудувати відсутні проекції прямих k
i m (рис. 3.9).
Рис. 3.8 Рис. 3.9
Точка належить
площині,
якщо вона лежить на прямій, що належить
цій площині. Для визначення відсутньої
проекції точки, яка лежить у площині
необхідно спочатку побудувати проекції
прямої, яка проходить через цю точку і
лежить у площині і на цих проекціях
прямої позначити проекції точки (рис.
3.10 і 3.11).
Рис. 3.10 Рис. 3.11
3.5. Головні лінії площини
В площині загального положення можна провести безліч прямих, які по відношенню до площин проекцій можуть займати особливе і загальне положення.
Горизонталлю площининазивається горизонталь, яка належить цій площині.
Побудову горизонталі
h
площини ,
заданої
АВС починаємо з проведення її фронтальної
проекції h2,
паралельної осі Х12
(рис. 3.12).
Ця проекція перетинає фронтальні
проекції прямих А2В2
і В2С2
в точках 12
і 22.
Побудувавши горизонтальні проекції
точок 11 і
21
і сполучивши їх між собою знайдемо
горизонтальну проекцію горизонталі. У
площині можна провести безліч горизонталей,
і всі вони будуть паралельні між собою
і паралельні нульовій горизонталі
(горизонтальному сліду площини h0)
(рис. 3.13).
Рис. 3.12 Рис. 3.13
Фронталлю площини називається фронталь, що належить цій площині. Побудову фронталі f площини (рис. 3.12 і 3.13) починаємо з проведення її горизонтальної проекції f1, яка паралельна осі Х12. Всі фронталі площини паралельні нульовій фронталі (фронтальному сліду площини f0) (рис. 3.13).
Профільною прямою площини (р) називається пряма, що належить цій площині і паралельна профільній площині проекцій. Її проекції на П1 і П2 завжди перпендикулярні осі Х12 (рис. 3.12).
Лініями найбільшого нахилу площини до площин проекцій називаються прямі, що лежать у площині і перпендикулярні до ліній рівня площини (слідів площини). Для побудови ліній найбільшого нахилу площини (ЛНН) необхідно побудувати лінії рівня площини, а потім - лінії найбільшого нахилу.
У площині розрізняють лінії найбільшого нахилу:
ЛНН відносно П1 визначає нахил площини до П1 і має ще одну назву: лінія скочування; відмітною особливістю лінії найбільшого нахилу до П1 є перпендикулярність її горизонтальної проекції до горизонтальної проекції горизонталі площини чи до її горизонтального сліду (ЛНН)1
h1;
ЛНН відносно П2 визначає нахил площини до П2; відмітною особливістю ЛНН до П2 є перпендикулярність її фронтальної проекції до фронтальної проекції фронталі площини чи до її фронтального сліду (ЛНН)2
f2;
ЛНН відносно П3 визначає нахил площини до П3; відмітною особливістю ЛНН до П3 є перпендикулярність її профільної проекції до профільної проекції профільної прямої площини чи до її профільного сліду (ЛНН)3
р3.
За допомогою ліній найбільшого нахилу визначають кути нахилу площини до площин проекцій. Ці кути вимірюються кутами, утвореними відповідними ЛНН з П1, П2, П3. Натуральна величина цих кутів може бути визначена способом прямокутного трикутника.
Побудову ліній найбільшого нахилу площини до площин проекцій розглянемо при розгляданні теми «Перпендикулярність».