Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
PTCA.doc
Скачиваний:
268
Добавлен:
11.02.2016
Размер:
3.54 Mб
Скачать

1.4. Синтез кс с учетом ограничений на .

При построении КС может оказаться, что выход k - го логического элемента нагружен входов других ЛЭ (рис.7а). Это означает, что k - тый логический элемент перегружен и необходимо принять меры, устраняющие указанное явление. Существуют два способа обеспечения заданного:

  • использование дополнительных развязывающих усилителей;

  • дублирование перегруженного элемента.

Схема с использованием дополнительных развязывающих усилителей представлена на рис.7.б. Количество p дополнительных усилителей, необходимых для обеспечения заданного , определяется по формуле:

Недостаток рассматриваемого способа в том, что в цепь распространения сигнала вносится дополнительная задержка, что не всегда допустимо.

Схема с использованием дублирования перегружаемого элемента представлена на рис.7.в. Количество p дополнительных элементов, выполняющих ту же функцию, что и К-тый элемент, определяется по формуле:

При таком способе обеспечения дополнительная задержка не вносится, но увеличивается нагрузка на элементы, формирующие сигналы и , что может привести к перегрузке этих элементов и введению дополнительных элементов для обеспечения заданного Краз.

1.5. Синтез кс с учетом ограничения на .

Представлению функции в виде ДНФ соответствует двухуровневая КС (если считать, что на ее вход могут поступать как прямые так и инверсные входные сигналы), на первом уровне которой элементы И , а их выходы объединяются на втором уровне элементом ИЛИ . Такое построение КС обеспечивает ее максимальное быстродействие, так как ранг схемы минимален. Однако, не всегда возможно на первом уровне и, особенно, на втором выбрать логические элементы с требуемым, т.к. может оказаться, что ЛЭ с таким не выпускаются промышленностью. В этом случае необходимо с помощью нескольких элементов с меньшим получить эквивалент с большим либо, что предпочтительней, преобразовать БФ, перейдя от ДНФ к скобочной форме. Этот переход сопровождается уменьшением логических элементов, требуемого для построения схемы. Осуществить такой переход можно с помощью факторного алгоритма, суть которого рассмотрим на примере.

Пусть задана некоторая булева функция в виде

Для реализации этой функции по приведенному выражению необходимо использовать 3 логических элемента 4И, один логический элемент 5И, один логический элемент 4ИЛИ.

С помощью факторного алгоритма получим скобочную форму для заданной функции. Для этого обозначим все конъюнкции буквами:

и будем рассматривать их как некоторые множества. Находим попарные пересечения множеств:

, , , , , .

Полученные пересечения показывают общие части отдельных конъюнкций. Выбираем пересечение, которое имеет наибольшую длину (если такое отсутствует, то выбирают то, которое чаще всего встречается). В данном случае это . Поэтому из конъюнкций А и В выносим общую часть. Тогда имеем:

.

Обозначим F = и находим пересечения:

, , .

Следовательно, для исходной функции имеем:

.

Обозначим ,

Пересечение. Следовательно, окончательно имеем:

Для реализации функции по последнему выражению необходимо 5 элементов 2И, 1 элемент 3И, 3 элемента 2ИЛИ ( рис.8 ).

Как видно из полученной схемы для ее реализации необходимы элементы с = 2 или 3 (в отличие от исходной с = 4 или 5). Однако ранг схемы увеличился до 7, что приводит к увеличению задержки срабатывания схемы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]