
- •6.Гравітаційна взаємодія поблизу поверхні Землі.
- •7.Електрична взаємодія. Закон Кулона.
- •8. Ждерело електричної взаємодії. Потенціал і напруженість поля точкового заряду.
- •10. Фізичні властивості твердих тіл та рідин.
- •11. Маса. Зв'язок маси тіла з його вагою. Одиниці виміру маси та ваги.
- •12. Терези. Типи терезів та вимірювання ваги.
- •13. Маса, як мірило інертності тіла. Другий закон Ньютона.
- •14. Густина, як фізична характеристика речовини. Методи визначення густини.
- •15. Закон Архімеда. Вплив сили Архімеда на результати вимірів ваги тіла.
- •17.Матеріальна точка (мт). Визначення положення мт у просторі, радіус-вектор.
- •18.Характеристики руху. Середня та миттєва швидкість. Нормальне та тангенціальне прискорення. Одиниці виміру швидкості та прискорення.
- •19. Інерціальні системи. Перший закон Ньютона.
- •23. Третій закон Ньютона
- •24. Пружна деформація. Закон Гука. Модуль Юнга. Енергія деформованої пружини.
- •26. Закон збереження енергії.
- •27. Однорідне силове поле. Рух мт в однорідному силовому полі.
- •28. Сили тертя. Сухе та грузле тертя. Рух твердого тіла по похилій площині.
- •29. Поступальні та обертальні рухи твердого тіла. Кутова швидкість та кутове прискорення.
- •30. Момент інерції твердого тіла. Моменти інерції тіл найпростішої форми.
- •36. Закон Паскаля.
- •36.Закон Паскаля.
- •37. Закон Архімеда.
- •38.Принцип дії гідравлічного пресу.
- •39.Гідродинаміка.Теорема про неперервність течії.
- •40.Рівняння Бернуллі та його наслідки.
- •50. Рівняння Клапейрона
- •60. Закон Дюлонга та Пті.
- •61. Барометрична формула
- •62. Адіабатичний процес. Рівняння адіабати.
- •63. Цикл Карно. Коефіцієнт корисної дії теплової машини.
- •68. Капілярні явища. Сила поверхневого натягу, висота підняття рідини в капілярі.
- •69. Поле точкового заряду. Силові лінії електричного поля. Геометрична інтерпретація полів силовими лініями.
- •71. Теорема Гауса
- •74. П’єзоелектрики, сегнетоелектрики, піроелектрики.
- •72. Полярні і неполярні молекули. Поляризація речовини.
- •73. Вплив речовини діелектрика на електричне поле.
- •76. Джерело електрорушійної сили (гальванічний елемент, електрогенератори)
- •77. Конденсатори. Ємність плоского конденсатора.
- •78. Паралельне та послідовне з’єднаня конденсаторів.
- •Закон Ома для повного кола
- •90. Електронна лампа тріод.
- •92. Напруженість та магнітна індукція. Сила Лоренца.
- •99. Класифікація матеріалів за магнітними властивостями.Феромагнетики.Парамагнетики.Діамагнетики.
- •104) Променева трубка. Принцип роботи осцилографа .Фігури Ліссажу
- •105) Умови виникнення періодичного руху
- •106. Найпростіші коливальні системи. Математичний, пружинний та фізичний маятники.
- •109. Електричні коливання. Електричний коливальний контур
- •110. Згасаючі коливання. Рівняння і характеристик згасаючих коливань
- •112. Вимушені коливання. Резонанс
- •117. Енергія світлової хвилі. Вектор Пойтінга.
- •118.Принцип Ферма розповсюдження хвиль.Закони відбиття та заломлення світлових хвиль.
- •120.Фотометрія.Сила світла,освітленість,світимість – визначення та одиниці виміру.
- •119.Коефіцієнти відбивання та проходження електромагнітних хвиль.
- •127.Інтерференція світла у тонких плівках. Просвітлення оптики
- •126.Інтерференція світла від двох когерентних джерел.
- •Поглинання світла
- •Розсіювання світла
- •132. Серії випромінювання. Умови квантування.
- •141. Термоядерний синтез.
- •142. Атомна енергетика.
- •Альфа-розпад
- •Бета-розпад
- •Гамма-розпад (ізомерний перехід)
Альфа-розпад
α-розпадомназивають мимовільний розпад атомного ядра на дочірнє ядро і α-частинку (ядро атома4He).
α-розпад, як правило, відбувається у важких ядрах з масовим числом А≥ 140 (хоча є кілька винятків). Усередині важких ядер за рахунок властивості насичення ядерних сил утворюються відособленіα-частинки, що складаються з двох протонів і двох нейтронів. Новоутворена α-частинка схильна більшого дії кулонівських сил відштовхування від протонів ядра, ніж окремі протони. Одночасно α-частинка відчуває менше ядерне тяжіння до нуклонами ядра, ніж інші нуклони. Новоутворена альфа-частинки на кордоні ядра відбивається від потенційного бар'єру всередину, однак з деякою вірогідністю вона може подолати його (див.Тунельний ефект) і вилетіти назовні. Зі зменшенням енергії альфа-частинки проникність потенційного бар'єру експоненціально зменшується, томучас життяядер з меншою енергією доступною альфа-розпаду за інших рівних умов більше.
Правило зміщення Содді для α-розпаду:
.
Приклад:
.
В результаті α-розпаду елемент зміщується на 2 клітки до початку таблиці Менделєєва, масове число дочірнього ядра зменшується на 4.
Бета-розпад
Беккерель довів, що β-промені є потоком електронів. β-розпад - це проявслабкої взаємодії.
β-розпад(точніше, бета-мінус-розпад, β--Розпад) - це радіоактивний розпад, що супроводжується випусканням з ядра електрона іантинейтрино.
β-розпад є внутрінуклонним процесом. Він відбувається внаслідок перетворення одного з d-кварківв одному знейтронівядра вu-кварк, при цьому відбувається перетворення нейтрона впротонз випусканням електрона і антинейтрино:
Правило зміщення Содді для β --Розпаду:
Приклад:
Післяβ--Розпаду елемент зміщується на 1 клітку до кінцятаблиці Менделєєва(заряд ядра збільшується на одиницю), тоді якмасове числоядра при цьому не змінюється.
Існують також інші типи бета-розпаду. В позитронному розпаді(бета-плюс-розпаді) ядро випускаєпозитронінейтрино. При цьому заряд ядра зменшується на одиницю (ядро зміщується на одну клітку до початку таблиці Менделєєва). Позитронний розпадзавждисупроводжується конкуруючим процесом -електронним захопленням(коли ядро захоплює електрон з атомної оболонки і випускає нейтрино, при цьому заряд ядра також зменшується на одиницю). Однак зворотне невірно: багато нукліди, для яких позитронний розпад заборонений, відчувають електронний захоплення. Найбільш рідкісним з відомих типів радіоактивного розпаду єподвійний бета-розпад, він виявлений на сьогодні лише для десяти нуклідів, і періоди напіврозпаду перевищують 1019років. Всі типи бета-розпаду зберігаютьмасове числоядра.
Гамма-розпад (ізомерний перехід)
Майже всі ядра мають, крім основного квантового стану, дискретний набір збуджених станів з більшою енергією (винятком є ядра 1H,2H,3Hі3He). Збуджені стани можуть заселятися при ядерних реакціях або радіоактивному розпаді інших ядер. Більшість порушених станів мають дуже малі часи життя (менше наносекунди). Однак існують і досить довгоживучі стану (чиї часи життя вимірюються мікросекунд, цілодобово або роками), які називаються ізомерних, хоча межа між ними і короткоживучими станами вельми умовна. Ізомерні стану ядер, як правило, розпадаються в основний стан (іноді через кілька проміжних станів). При цьому випромінюються один або кілька гамма-квантів; збудження ядра може зніматися також за допомогою вильотуконверсійних електронівз атомної оболонки. Ізомерні стани можуть розпадатися також і за допомогою звичайних бета-і альфа-розпадів.
Ланцюгова реакція — реакція, продукти якої, своєю чергою, вступають у взаємодію з початковими продуктами. У ядерній фізиці ланцюгові реакції виникають під час поділу ядра, зумовленому нейтроном. Поділ відбувається з вивільненням кількох, здебільшого 2-3 нейтронів, які в свою чергу можуть ініціювати поділ інших ядер. Ймовірність захоплення ядром нейтронів залежить від їхньої швидкості, тому для підтримання ланцюгової реакції нейтрони необхідно сповільнювати.
Оскільки частина нейтронів, утворених під час поділу, втрачається, поглинаючись без поділу іншими ядрами або вилітаючи за межі реактора, ланцюгову реакцію характеризуютьефективним коефіцієнтом розмноженняk - кількістю новостворених нейтронів під час одиничного акту поділу, які в свою чергу викликають поділ інших ядер. Якщо ефективний коефіцієнт розмноження більший за одиницю, то число актів поділу збільшується, реакція розганяється, вивільнюючи дедалі більше енергії і може завершитися вибухом. Така реакція називаєтьсянадкритичною. Якщо k менший від одиниці, реакція згасає з часом. Такий режим називаєтьсяпідкритичним. Для k = 1 перебіг реакції залишається незмінним. Саме такийкритичнийрежим використовується вядерних реакторах.