Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ІПЕМтаТ_Коцур / Расчет параметров кз

.pdf
Скачиваний:
17
Добавлен:
07.02.2016
Размер:
931.06 Кб
Скачать

В силовых трансформаторах общего назначения потери в отводах составляют, как правило, не более 5-8 % потерь короткого замыкания, а добавочные потери в отводах - не более 5 % основных потерь в отводах. Поэтому предварительный расчет потерь с определением длины отводов по формулам (7.21) и (7.22) дает достаточно точный результат, и необходимость в определении добавочных потерь в отводах отпадает.

Потери в стенках бака и других стальных деталях трансформатора.

Поля рассеяния обмоток и отводов трансформатора, возникая в пространстве окружающем эти части, проникают также и в ферромагнитные детали конструкции трансформатора - стенки бака, прессующие балки ярм, прессующие кольца обмоток и т. д.

Потери, возникающие в этих ферромагнитных деталях от гистерезиса и вихревых токов, также относятся к потерям короткого замыкания. Эти потери зависят от распределения и интенсивности поля рассеяния, от расположения, формы и размеров ферромагнитных деталей и нестабильных магнитных свойств современных конструкционных сталей.

Расчет и учет потерь в деталях конструкции представляет достаточно сложную задачу, для решения которой различными авторами предложен ряд методов более или менее приближенного расчета, основанных на ряде допущений в построении поля рассеяния вблизи ферромагнитных деталей, в приведении реальных размеров бака к условным расчетным размерам и на учете среднестатистических магнитных свойств материалов. Несмотря на ряд упрощений, эти методы требуют большой расчетной работы с применением средств вычислительной техники и при применении различных методов к одному реальному объекту могут дать существенно различающиеся результаты.

С ростом номинальной мощности трансформатора возрастают поток и напряженность магнитного поля рассеяния. Это особенно сказывается в трехобмоточных трансформаторах, где поток рассеяния при работе на двух крайних обмотках может достигать 18-25 % потока основного магнитного поля трансформатора, и в автотрансформаторах, где он достигает 30-40 %. Вместе с ростом мощности возрастают и потери от гистерезиса и вихревых токов в ферромагнитных деталях конструкции трансформатора - стенке бака, ярмовых балках, прессующих кольцах обмоток и т.д. Эти потери не только понижают КПД трансформатора, но при концентрации потерь в отдельных деталях также создают опасность нагрева этих деталей до недопустимой температуры. Особое значение проблема этих потерь приобретает при мощностях от 80000 кВ·А и более.

Задачей расчетчика и конструктора трансформатора является не только расчет добавочных потерь в деталях конструкции, но также и правильный выбор конструктивных форм магнитной системы, обмоток, стенок бака и других деталей, обеспечивающих получение наименьших добавочных потерь в деталях конструкции и отсутствие мест опасного сосредоточения этих потерь.

Основными мерами по уменьшению добавочных потерь в настоящее время служат: рациональное распределение витков обмоток и поля рассеяния в трансформаторе, правильный выбор размеров и формы деталей, применение материалов, в которых не возникают или возникают малые потери в переменном магнитном поле.

В целях рационального распределения поля рассеяния вблизи ферромагнитных конструктивных деталей, например ярмовых балок, стенок бака и т. д., параллельно с этими деталями могут быть установлены магнитные экраны в виде пакетов из пластин электротехнической стали, обладающей высокой магнитной проницаемостью. Вследствие того, что поле рассеяния обмоток возникает и замыкается в неферромагнитной среде в зоне внутри и вне обмоток, его магнитный поток практически не зависит от наличия или отсутствия в этой зоне отдельных ферромагнитных основных деталей конструкции или экранирующих их элементов. Поэтому в каждой паре конструктивная деталь - экранирующий элемент магнитное поле на данном участке будет сосредоточено в большей части в экранирующем элементе. При этом в электротехнической стали магнитного экрана при индукциях, имеющих место в зоне поля рассеяния, около 0,1–0,2 Тл потери будут во много раз меньше, чем в этой конструктивной детали, не защищенной магнитным экраном. Изготовление экранирующих элементов для стенки бака трансформатора требует затраты значительного количества электротехнической стали, однако для изготовления этих элементов могут быть частично использованы отходы, получающиеся при продольной разрезке рулонной стали на ленты.

Дополнительные затраты электротехнической стали на изготовление магнитных экранов экономически оправдываются уменьшением потерь в экранируемых деталях преимущественно в трансформаторах с

достаточно большой номинальной мощностью - от 80000 - 100000 кВ·А и выше. Большой эффект в снижении добавочных потерь может дать замена ряда стальных деталей - прессующих колец обмоток, ярмовых балок и т.д.- деталями из специальных немагнитных сталей или пластмасс, дающих возможность уменьшить эти потери или вообще избавиться от них. Интересно отметить, что некоторые иностранные фирмы в трансформаторах мощностью до 10000 -16000 кВ·А заменяют стальные ярмовые балки склеенными из деревянных пластин.

Следует отчетливо представлять, что ферромагнитная конструктивная деталь - прессующее кольцо обмотки, стенка бака и др., сосредоточивая в себе некоторую часть поля рассеяния, экранирует область пространства, расположенную за этой деталью, практически не допуская распространения поля в эту область. При замене ферромагнитной детали неферромагнитной экранирующее действие детали исчезает. Так, при замене стальной стенки бака стенкой из неферромагнитного материала магнитное поле рассеяния обмоток получит свободный выход в пространство вне объема трансформатора, и предвидеть последствия проникновения этого поля в металлоконструкции подстанции и воздействия его на персонал подстанции и на работу электромагнитных приборов и устройств далеко не просто.

Поскольку при рациональной конструкции трансформатора потери в ферромагнитных конструктивных деталях составляют сравнительно небольшую часть потерь короткого замыкания, расчетное определение этих потерь для трансформаторов общего назначения в ограниченном диапазоне мощностей можно проводить, используя приближенные методы. На этапе расчета обмоток, когда размеры бака еще не известны, для трансформаторов мощностью от 100 до 63000 кВ·А можно с достаточным приближением определить потери в баке и деталях конструкции, Вт,

(7.25)

где S - полная мощность трансформатора, кВ·А; k - коэффициент, определяемый по табл. 7.1.

Таблица 7.1. Значения коэффициента k в (7.25).

Мощность,

 

До 1000

1000-4000

6300-10000

16000-25000

40000-63000

кВ·А

 

 

 

 

 

 

 

 

 

 

 

k

0,015-0,02

0,025-0,04

0,04-0,045

0,045-0,053

0,06-0,07

После расчета бака для трансформаторов мощностью от 10000 до 63000 кВ·А добавочные потери в стенках могут быть приближенно подсчитаны для частоты 50 Гц по приближенной формуле

, (7.26)

где k=2,20 при uk≤11,5%; k=1,50 при uk> 11,5%; Ф - поток одного стержня, равный ПсВс, Вб; l – высота обмотки, м: pб - периметр гладкого бака, м; R – средний радиус бака, м, R=(А+В - 2С)/4 (A - длина бака; B - ширина бака; С - расстояние между осями стержней); r12 - средний радиус канала рассеяния, м.

В трехобмоточных трансформаторах рассчитывают три значения потерь короткого замыкания для трех случаев работы трансформатора при нагрузке 100% номинальной мощности, как в двухобмоточных, на обмотках ВН. и СН, ВН и НН, СН и НН. За потери короткого замыкания трехобмоточного трансформатора принимается наибольшее из этих трех значений Рк.

Расчет основных потерь короткого замыкания для каждой из обмоток трехобмоточного трансформатора производится так же, как и для двухобмоточного. При этом считают, что каждая обмотка нагружена током, соответствующим 100 %-ной номинальной мощности трансформатора (для обмоток, рассчитываемых на 67 % номинальной мощности, 1,5 значения номинального тока).

Добавочные потери в двух крайних обмотках - наружной обмотке ВН и внутренней обмотке (СН или НН) - рассчитываются так же, как и для двухобмоточного трансформатора, по (7.12) или одной из последующих формул.

Добавочные потери в средней из трех обмоток на каждом стержне (НН или СН) рассчитываются для двух различных режимов работы - для 100 %-ной нагрузки этой обмотки с любой из двух других обмоток по (7.12) или одной из последующих и для 100 %-ной нагрузки двух других (крайних) обмоток при отсутствии тока в средней обмотке.

Рис. 7.4. К расчету добавочных потерь и напряжения короткого замыкания в трехобмоточном трансформаторе.

Распределение поля рассеяния при Нагрузке двух крайних обмоток І и ІІ.

В последнем случае средняя обмотка не имеет собственного поля рассеяния, но находится в магнитном поле с постоянной по ширине обмотки индукцией, созданном двумя крайними обмотками (рис. 7.4). Это поле вызывает в средней обмотке потери от вихревых токов РвІІ, Вт, примерно в 3 раза большие, чем при участии этой обмотки в номинальном двухобмоточном режиме. Эти потери могут выть рассчитаны по формуле

(7.27)

где kд,к - коэффициент добавочных потерь, рассчитанный для средней обмотки по (7.11) при k=n (n– число проводов обмотки в радиальном направлении); РоснІІ - основные потери в средней обмотке при токе, соответствующем 100% -ной номинальной мощности трансформатора.

Расчет потерь в отводах для трехобмоточного трансформатора проводится так же, как и для двухобмоточного, отдельно для каждой из трех обмоток, при токе, соответствующем 100 %-ной номинальной мощности.

Потери в стенках бака и стальных деталях конструкции определяются для трех случаев нагрузки трансформатора ВН - СН, ВН - НН и СН - НН по (7.26) для соответствующих значений uр.

Полные потери короткого замыкания для каждой пары обмоток трехобмоточного трансформатора могут быть подсчитаны по (7.1). При этом для каждой пары обмоток должно быть подставлено свое значение Рб, а при определении потерь пары крайних обмоток І и ІІІ по рис. 7.4 прибавлены добавочные потери в средней обмотке РвІІ, найденные по (7.27) .

Расчет потерь короткого замыкания двухобмоточного автотрансформатора проводится так же, как для двухобмоточного трансформатора для токов обмоток І1 и І2. При этом Рб рассчитывается для расчетного напряжения uк,р (§ 3.2). При расчете потерь для трехобмоточного автотрансформатора с автотрансформаторной связью двух обмоток и трансформаторной связью между этими обмотками и обмоткой III следует учитывать замечания, изложенные в § 7.1 (расчет потерь для трехобмоточных трансформаторов) и указания § 3.2 (расчет автотрансформаторов).

7.2. РАСЧЕТ НАПРЯЖЕНИЯ КОРОТКОГО ЗАМЫКАНИЯ

Напряжением короткого замыкания двухобмоточного трансформатора называется приведенное к расчетной температуре напряжение, которое следует подвести при номинальной частоте к зажимам одной из обмоток при замкнутой накоротко другой обмотке, чтобы в обеих обмотках установились номинальные токи. При этом переключатель должен находиться в положении, соответствующем номинальному напряжению.

Напряжение короткого замыкания определяет падение напряжения в трансформаторе, его внешнюю характеристику и ток короткого замыкания. Оно учитывается также при подборе трансформатора для параллельной работы.

В трехобмоточном трансформаторе напряжение короткого замыкания определяется подобным же образом для любой пары его обмоток при разомкнутой третьей обмотке. Поэтому трехобмоточный трансформатор имеет три различных напряжения короткого замыкания. Для всех трансформаторов напряжение короткого замыкания и его составляющие принято выражать в процентах номинального напряжения, а активную составляющую определять для средней эксплуатационной температуры обмоток 75 °С для всех масляных и сухих трансформаторов с изоляцией классов нагревостойкости А, Е, В. Для трансформаторов с изоляцией классов F, Н, С расчетная температура 115°С. Активная составляющая напряжения короткого замыкания, В, может быть записана так: Uа=rkIном, где rk - активное сопротивление короткого замыкания трансформатора, приведенное к одной из его обмоток, с учетом добавочных потерь, в обмотках, потерь в отводах и металлических конструкциях; Iном - номинальный ток обмотки, к числу витков которой приведено сопротивление rk=r1+r2.

Выражая активную составляющую в процентах номинального напряжения, получаем

Умножая числитель и знаменатель на число фаз m и номинальный фазный ток Iном получаем формулу, справедливую для трансформаторов с любым числом фаз:

(7.28)

где Pк - потери короткого замыкания трансформатора, Вт; S - номинальная мощность трансформатора, кВ·А. Для трехобмоточного трансформатора S - наибольшая из мощностей трех обмоток (100 %); для автотрансформатора S=Sтип - типовая мощность, если нужно получить расчетное значение uа,р, и S=Sпрох - проходная мощность, если нужно получить сетевое значение uа,с.

Реактивная составляющая напряжения короткого замыкания, В, может быть записана так: UркIном, где хк12 - реактивное сопротивление короткого замыкания трансформатора, приведенное к одной из его обмоток. Выражая реактивную составляющую напряжения в процентах, получаем

(7.29)

Из общей теории трансформаторов известно, что реактивное сопротивление трансформатора для простейшего случая взаимного расположения концентрических обмоток по рис. 7.5 при равной высоте обмоток и равномерном распределении витков по их высоте может быть представлено в виде (7.30). Это выражение учитывает продольное (осевое) поле рассеяния обмоток, предполагая все индукционные линии в пределах высоты обмотки прямыми, параллельными оси обмотки с поправкой на отклонение индукционных линий от этого направления вблизи торцов обмотки, учитываемое коэффициентом kр:

(7.30)

Рис. 7.5. Поле рассеяния двух концентрических обмоток.

Подставив xk в (7.29) и заменив в этом выражении Uном на uвω, получим

(7.31)

Отношение πd12/l=β является одним из основных соотношений, определяющих распределение активных материалов в трансформаторе. Введя это обозначение и заменив в числителе выражения (7.31) и число витков ω=Uн/uв, получим

(7.32)

Ширина приведенного канала рассеяния ар, м, в (7.30) - (7.32) в тех случаях, когда радиальные размеры обмоток а1 и а2 равны или мало отличаются друг от друга (в трансформаторах мощностью S<10000 кВ·А), может быть принята равной

При расчете трансформаторов мощностью от 10000 кВ·А следует учитывать неравенство размеров а1 и а2 и определять ар по формуле

где d12 - средний диаметр канала между обмотками, м; Dср1 и Dcр2 - средние диаметры обмоток, м.

При расчете uр по (7.31) и (7.32), а также при всех дальнейших расчетах следует пользоваться реальными размерами рассчитанных обмоток трансформатора (а1, а2, a12, d12, l), а не приближенными значениями β и ар, найденными при определении основных размеров трансформатора. Весь расчет напряжения короткого замыкания проводится для одного стержня трансформатора. Поэтому при пользовании формулами для определения uр при расчете как трехфазного, так и однофазного трансформатора следует подставлять в эти формулы ток, напряжение и мощность, а также число витков обмотки одного стержня для номинального режима.

Коэффициент kр, учитывающий отклонение реального поля рассеяния от идеального параллельного поля, вызванное конечным значением осевого размера обмоток l по сравнению с их радиальными размерами (а12, а1, a2), для случая расположения обмоток по рис. 7.5 может быть подсчитан по приближенной формуле

(7.33)

или более простой

где σ = (а121+a2)/(πl).

Обычно kр при концентрическом расположении обмоток и равномерном расположении витков по их высоте колеблется в пределах от 0,93 до 0,98. Равномерное распределение витков по высоте каждой обмотки при равенстве высот обеих обмоток является наиболее рациональным. При этом осевые силы в обмотках при аварийном коротком замыкании трансформатора будут наименьшими. Речь идет о равномерном распределении витков, в которых протекает электрический ток. При отсутствии тока в части витков обмотки эти витки с точки зрения образования магнитного поля рассеяния являются отсутствующими.

Неравномерное распределение витков, нагруженных током по высоте бывает вынужденным, например, при размещении в середине высоты обмотки ВН с ПБВ регулировочных витков, отключаемых при регулировании со ступени+5 до ступени -5 % номинального напряжения (рис. 7.6, а). Чрезвычайно редко умышленно допускают неравенство высот обмоток по рис. 7.6, 6 или в. В трансформаторах с РПН витки каждой ступени регулирования обычно располагаются по всей высоте обмотки (см. рис. 6.9).

Реальное поле рассеяния обмоток для случая выключения части витков одной из обмоток по рис. 7.6, а может быть в упрощенном виде представлено в виде суммы двух полей: продольного, созданного полным числом витков обмоток с током, и поперечного, вызванного током витков, нескомпенсированных вследствие разности высот обмоток.

Рис. 7.6. Различные случаи взаимного расположения обмоток

трансформатора.

Показанное на рис. 7.7 распределение индукции поперечного поля рассеяния является приближенным. Оно не учитывает поперечной составляющей вблизи торцов обмотки и взаимного влияния различных частей обмотки и их зеркальных изображений в ферромагнитной поверхности стержня.

Рис. 7.7. Разложение реальной обмотки с выключением витков в

середине высоты на две фиктивные обмотки.

Использование этой приближенной картины поля для внесения поправки в расчет uр возможно потому, что сама эта поправка для концентрических обмоток составляет не более 3–5 % uр.

Анализ этого и других случаев взаимного расположения обмоток показывает, что реактивное сопротивление обмоток в этих частных случаях распределения витков по высоте может приближенно определяться по формуле

(7.34)

где х' находят по (7.30) без учета неравномерного распределения витков по высоте; kq - коэффициент, приближенно определяемый по формуле

(7.35)

здесь х=lх/l (lx и l - по рис. 7.6).

При определений х следует считать, что трансформатор работает на средней ступени напряжения ВН. Значения m можно принять равными: m=3 для рис. 7.6, а и в; m=0,75 для рис. 7.6, б.

В соответствии с ГОСТ для всех трансформаторов c РПН мощностью от 1000 кВ·А и выше должны рассчитываться значения напряжения короткого замыкания не только для средней, но также и для двух крайних ступеней диапазона регулирования напряжения [6].

Для трансформаторов с регулированием напряжения в пределах до 10% при расположении регулировочных витков по рис. 7.6, а или в значения kq обычно лежат в пределах от 1,01 до 1,06.

Подобно хк определяется в этих случаях и реактивная составляющая напряжения короткого замыкания

(7.36)

где uр находят по (7.31) или (7.32).

После определения активной и реактивной составляющих напряжение короткого замыкания трансформатора может быть найдено по формуле

(7.37)

Расчет напряжения короткого замыкания для трехобмоточного трансформатора проводится в том же порядке, как и для двухобмоточного. При этом определяются uа, uр и uк для всех возможных сочетаний трех обмоток, а именно ВН - СН, ВН - НН и СН - НН. При определении uр для внутренней III по рис. 7.4 и наружной I обмоток в ар в качестве изоляционного промежутка между наружной и средней обмотками a13 включаются: ширина а12 канала между наружной и средней обмотками, ширина а2 средней обмотки и ширина a23 канала между средней и внутренней обмотками. В этом случае

и для трансформаторов мощностью 10000 кВ·А и более

где d13=Dср3 + a3 + a3 + a2 + a12 - по рис. 7.4.

Определение ар для сочетаний обмоток І - II и II - III осуществляется, как для двухобмоточного трансформатора. Во всех случаях, даже если одна или две обмотки рассчитаны на мощность 67 % заданной мощности трансформатора, в (7.32) следует подставлять мощность S', определяемую для обмотки стержня, имеющей наибольшую мощность (100 %). Все радиальные размеры и диаметры измеряются в метрах.

При расчете двухобмоточного автотрансформатора его расчетные величины ua, uр и uк, определяются также, как и для двухобмоточного трансформатора, по реальным размерам обмоток и типовой мощности автотрансформатора. Эти же параметры, отнесенные к сети, определяются по расчетным значениям путем умножения их на коэффициент выгодности (см, § 3.2), например

Расчет напряжения короткого замыкания и его составляющих для автотрансформатора, имеющего третью обмотку с трансформаторной связью с первой и второй обмотками, производится так же, как и для

трехобмоточного трансформатора, с учетом особенностей расчета автотрансформаторов для обмоток, имеющих автотрансформаторную связь.

Напряжение короткого замыкания должно совпадать с uк, регламентированным ГОСТ или заданным в технических условиях (задании) на проект трансформатора. Согласно ГОСТ 11677-85 напряжение короткого замыкания готового трансформатора на основном ответвлении не должно отличаться от гарантийного значения более чем на ±10 %. При изготовлении трансформатора вследствие возможных отклонений в размерах обмоток (в частности, в размерах а1, а2 и a12), лежащих в пределах нормальных производственных допусков, uк готового трансформатора может отличаться от расчетного значения на ±5%. Для того чтобы отклонение uк у готового трансформатора не выходило за допустимый предел (±10% гарантийного значения), рекомендуется при расчете трансформатора не допускать отклонений в расчетном значений напряжения короткого замыкания более чем ±5 % гарантийного значения.

В тех случаях, когда полученное значение uк отклоняется более чем на ±5% заданного (гарантийного), его изменение в нужном направлении может быть достигнуто за счет изменения реактивной составляющей uр. Небольшие изменения могут быть получены путем увеличения или уменьшения осевого размера обмотки l при соответствующем уменьшении или увеличении радиальных размеров обмоток а1 и a2. Более резкое изменение uр достигается изменением напряжения одного витка uв за счет увеличения или уменьшения диаметра стержня магнитной системы d или индукции Вс в нем. Изменять в этих целях изоляционное расстояние а12 не рекомендуется.

7.3. ОПРЕДЕЛЕНИЕ МЕХАНИЧЕСКИХ СИЛ В ОБМОТКАХ И НАГРЕВА ОБМОТОК ПРИ КОРОТКОМ ЗАМЫКАНИИ.

Процесс короткого замыкания трансформатора, являющийся аварийным режимом, сопровождается многократным увеличением токов в обмотках трансформатора по сравнению с номинальными токами, повышенным нагревом обмоток и ударными механическими силами, действующими на обмотки и их части. Проверка обмоток на механическую прочность при коротком замыкании включает:

определение наибольшего, установившегося и наибольшего ударного тока короткого замыкания;

определение механических сил между обмотками и их частями;

определение механических напряжений в изоляционных опорных и междукатушечных конструкциях и в проводах обмоток;

определение температуры обмоток при коротком замыкании.

Действующее значение установившегося тока короткого замыкания определяется согласно ГОСТ 11677-85 с учетом сопротивления питающей сети для основного ответвления обмотки

(7.38)

где Iном - номинальный ток соответствующей обмотки, А; Sном - номинальная мощность трансформатора, МВ·А; Sk - мощность короткого замыкания электрической сети по табл. 7.2, МВ·А; uн - напряжение короткого замыкания трансформатора, %.

Действующее значение наибольшего установившегося тока короткого замыкания для трансформаторов мощностью менее 1,0 МВ·А определяется по формуле (если принять Sк=∞)

где Iном – номинальный ток соответствующей обмотки катушки или витка.

Таблица 7.2. Определение мощности короткого замыкания электрической сети

Sk [ к формуле (7.38)].

Класс напряжения ВН, кВ

6-10

10-35

110

150

220

330

500

 

 

 

 

 

 

 

Мощность короткого замыкания электрической сети, МВ·А

500

2500

15000

20000

25000

35000

50000

 

 

 

 

 

 

 

 

Примечание. Для однофазного трансформатора значения Sk, полученные из табл. 7.2, делить на 3.

Втрехобмоточных трансформаторах каждая обмотка связана с двумя другими обмотками различными

напряжениями короткого замыкания uк. В (7.38) для каждой обмотки следует подставлять меньшее из двух значений uк. Для автотрансформаторов в (7.38) следует подставлять сетевое значение uк,с.

Вначальный момент ток короткого замыкания вследствие наличия апериодической составляющей может значительно превысить установившийся ток и вызвать механические силы между обмотками, превышающие в несколько раз силы при установившемся токе короткого замыкания. Согласно общей теории трансформаторов это наибольшее мгновенное значение тока короткого замыкания - ударный ток короткого замыкания, определяемый по формуле

(7.39)

где kmах - коэффициент, учитывающий максимально возможную апериодическую составляющую тока короткого замыкания,

(7.40)

В табл. 7.3 приведены значения kmax√2 для различных соотношений uр и ua.

Наибольшую опасность при коротком замыкании представляют для обмоток трансформатора механические силы, возникающие между обмотками и их частями. Их необходимо учитывать при расчете и конструировании трансформатора, в противном случае они могут привести к разрушению обмотки, к деформации или разрыву витков или разрушению опорных конструкций.

Таблица 7.3. Значения kmax√2 при различных значениях up/ua.

up/ua 1,0 1,5 2,0 3,0 4,0 kmax√21,51 1,63 1,75 1,95 2,09 up/ua 5,0 6,0 8,0 10,0 14 и более kmax√22,19 2,28 2,38 2,46 2,55

Механические силы возникают в результате взаимодействия тока в обмотке с магнитным полем обмоток. Расчет сил, так же как и расчет поля обмоток, представляет очень сложную задачу. Эта задача еще осложняется тем, что обмотки трансформатора не являются монолитными в механическом отношении. Конструктивно каждая обмотка трансформатора состоит из проводников, разделенных витковой изоляцией в виде обмотки из кабельной бумаги или пряжи и в некоторых видах обмоток междуслойной изоляцией - прослойками из кабельной бумаги или картона. Между катушками, а в некоторых обмотках и между витками размещаются прокладки, набранные из электроизоляционного картона. Механические силы, возникающие при коротком замыкании и действующие на проводники обмотки, неравномерно распределяются между ее витками. Суммируясь, они создают силы, действующие на междукатушечную и опорную изоляцию обмоток, рейки, образующие вертикальные каналы, и изоляционные цилиндры.

Одним из условий, позволяющих получить обмотку, хорошо противостоящую воздействию механических сил, возникающих при коротком замыкании трансформатора, является максимальная монолитность ее механической структуры. Это достигается путем предварительной прессовки электроизоляционного картона, используемого для изготовления изоляционных деталей обмотки, механического поджима витков обмотки в осевом и радиальном направлениях при ее намотке и осевой опрессовки обмотки после ее намотки и сушки силами, близкими к осевым силам при коротком замыкании. Механическая монолитизация может быть также усилена пропиткой обмотки после ее изготовления, сушки и опрессовки глифталевым или другим лаком. Для упрощения задачи при расчетах трансформаторов обычно производится проверочное определение суммарных механических сил, действующих на всю обмотку по полному потоку рассеяния или по полному току обмотки. Обмотка при этом считается монолитной в механическом отношении.