Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kniga2nov.doc
Скачиваний:
56
Добавлен:
07.02.2016
Размер:
417.79 Кб
Скачать

11

Министерство образования и науки Украины

Запорожский национальный технический университет

Текст лекций для самостоятельной работы

по курсу “Теория резания“

.Тема 2 Инструментальные материалы

для студентов специальностей:

7.090202 “Технология машиностроения”,

7.090203 “Металлорежущие станки и системы”

2004

Текст лекций для самостоятельной работы по курсу “Теория резания“. .Тема 2 Инструментальные материалы для студентов специальностей: 7.090202 “Технология машиностроения”, 7.090203 “Металлорежущие станки и системы” // Сост. Внуков Ю.Н, . - Запорожье: ЗНТУ, 2004. –31с.

Составители: Внуков Ю.Н., д.т.н., профессор

Левченко Б.Н., ст. преподаватель

Ответственный

за выпуск: Ивщенко Л.И., зав. каф. МС и И

Утверждено

Редакционно-издательским

советом университета

Протокол №___________

От_____________2004 г.

©ЗНТУ 2004

Содержание

Тема 2 инструментальные материалы

2.1 Требования, предъявляемые к инструментальным материалам

2.2 Инструментальные стали

2.2.1 Углеродистые и легированные инструментальные стали

2.2.2 Быстрорежущие стали

2.3 Твердые сплавы

2.3.1 Вольфрамокобальтовые сплавы (группа ВК)

2.3.2 Титановольврамокобальтовые сплавы (группа ТК)

2.3.3 Титанотанталовольфрамокобальтовые сплавы (группа ТТК)

2.3.4 Безвольфрамовые твердые сплавы (БВТС)

2.3.5 Краткие рекомендации по выбору твердых сплавов

2.3.6 Классификация современных твердых сплавов по международному стандарту ИСО513 и определение условий их эффективного использования

2.4 Режущая керамика

2.5 Сверхтвердые синтетические поликристаллические инструментальные материалы

2.5.1 Особенности получения инструментальных материалов на основе алмаза и кубического нитрида бора

2.5.2 Характеристика основных свойств и область применения поликристаллов синтетического алмаза (ПКА)

2.5.3 Характеристика основных свойств и область применения ПСТМ на основе плотных модификаций нитрида бора BN

2.6 Инструментальные материалы с износостойким покрытием

Контрольные вопросы по теме 2

Литература к теме 2

Тема 2 инструментальные материалы

2.1 Требования, предъявляемые к инструментальным материалам

При резании контактные площадки инструмента подвергаются интенсивному воздействию высоких силовых нагрузок и температур, величины которых имеют переменный характер, а взаимодействие с обрабатываемым материалом и реагентами из окружающей среды приводит к протеканию интенсивных физико-химических процессов: адгезии, диффузии, окисления, коррозии и др.

С учетом необходимости сопротивления контактных площадок режущего инструмента микро- и макроразрушению в указанных условиях, к свойствам инструментальных материалов предъявляется ряд специальных требований, выполнение которых определяет место их эффективного применения для режущих инструментов. Основные требования к инструментальным материалам следующие:

1. Инструментальный материал должен иметь высокую твердость.

Твердость инструментального материала должна быть выше твердости обрабатываемого не менее чем в 1,4 - 1.7 раза.

2. При резании металлов выделяется значительное количество теплоты и режущая часть инструмента нагревается. Поэтому, инструментальный материал должен обладать высокой теплостойкостью. Способность материала сохранять высокую твердость при температурах резания называется теплостойкостью.. Для быстрорежущей стали – теплостойкость еще называют красностойкостью (т.е. сохранение твердости при нагреве до температур начала свечения стали)

Увеличение уровня теплостойкости инструментального материала позволяет ему работать с большими скоростями резания (табл. 2.1).

Таблица 2.1 - Теплостойкость и допустимая скорость резания инструментальных материалов.

Материал

Теплостойкость, К

Допустимая скорость при резании Стали 45 м/мин

Углеродистая сталь

473 – 523

10 – 15

Легированная сталь

623 – 673

15 – 30

Быстрорежущая сталь

873 – 823

40 – 60

Твердые сплавы:

Группа ВК

1173 – 1200

120 – 200

Группы ТК и ТТК

1273 – 1300

150 – 250

безвольфрамовые

1073 – 1100

100 – 300

с покрытием

1273 – 1373

200 – 300

Керамика

1473 – 1500

400 – 600

3. Важным требованием является достаточно высокая прочность инструментального материала. Если высокая твердость материала рабочей части инструмента не обеспечивается необходимой прочностью, то это приводит к поломке инструмента и выкрашиванию режущих кромок.

Таким образом, инструментальный материал должен иметь достаточный уровень ударной вязкости и сопротивляться появлению трещин (т.е. иметь высокую трещиностойкость).

4. Инструментальный материал должен иметь высокую износостойкость при повышенной температуре, т.е. обладать хорошей сопротивляемостью истиранию обрабатываемым материалом, которая проявляется в сопротивлении материала контактной усталости.

5. Необходимым условием достижения высоких режущих свойств инструмента является низкая физико-химическая активность инструментального материала по отношению к обрабатываемому. Поэтому кристаллохимические свойства инструментального материала должны существенно отличаться от соответствующих свойств обрабатываемого материала. Степень такого отличия сильно влияет на интенсивность физико-химических процессов (адгезионно-усталостные, коррозионно-окислительные и диффузионные процессы) и изнашивание контактных площадок инструмента.

6. Инструментальный материал должен обладать технологическими свойствами, обеспечивающими оптимальные условия изготовления из него инструментов. Для инструментальных сталей ими являются хорошая обрабатываемость резанием и давлением; благоприятные особенности термической обработки (малая чувствительность к перегреву и обезуглероживанию, хорошие закаливаемость и прокаливаемость, минимальные деформирование и образование трещин при закалке и т.д.); хорошая шлифуемость после термической обработки.

На рис. 2.1 показано расположение основных групп инструментальных материалов по их свойствам. Из рисунка видно, что твердость и прочность инструментальных материалов это свойства антагонисты, т.е. чем выше твердость материала, тем ниже его прочность. Поэтому набор основных свойств и определяет область и условие рационального использования инструментального материала в режущем инструменте.

Например, инструмент из сверхтвердых инструментальных материалов на основе алмаза и кубического нитрида бора (СТМ) или из режущей керамики (РК), используют исключительно для суперчистовой обработки изделий на высоких и сверхвысоких скоростях резания, но при весьма ограниченных сечениях среза.

При обработке конструкционных сталей на малых и средних скоростях резания в сочетании со средними и большими сечениями среза большие преимущества получают инструменты из быстрорежущей стали.

Инструментальные материалы подразделяются на пять основных групп: инструментальные стали (углеродистые, легированные и быстрорежущие); металлокерамические твердые

1 – Принципиальная зависимость основных свойств инструментальных материалов (твердость – прочность)

Рисунок 2.1 – Классификация инструментальных материалов по их свойствам.

сплавы (группы ВК, ТК и ТТК); режущая керамика (оксидная, оксикарбидная и нитридная); абразивные материалы (см. абразивная

обработка) и сверхтвердые материалы СТМ (на основе алмаза и кубического нитрида бора (КНБ)).

Наиболее распространенная из этих групп – быстрорежущая сталь, из которой изготавливается около 60% инструмента, из металлокерамических твердых сплавов – около 30%, из остальных групп материалов – только около 10 % лезвийного инструмента.

Анализ основных направлений совершенствования инструментальных материалов (см. рис. 2.1) позволяет отметить, что они связаны с ростом твердости, теплостойкости, износостойкости при снижении прочностных характеристик, вязкости и трещиностойкости. Эти тенденции не соответствуют идее создания идеального инструментального материала с оптимальным сочетанием свойств по твердости, теплостойкости, ударной вязкости, трещиностойкости, прочности.

Очевидно, что решение этой проблемы должно быть связано с разработкой композиционного инструментального материала, у которого высокие значения поверхностной твердости, теплостойкости, физико-химической инертности сочетались бы с достаточными значениями объемной прочности при изгибе, ударной вязкости, предела выносливости.

В мировой практике указанные методы совершенствования инструментальных материалов находят все большее применение, особенно при производстве сменных многогранных пластин (СМП) для механического крепления на режущем инструменте.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]