Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты 4 5 6.rtf
Скачиваний:
13
Добавлен:
06.02.2016
Размер:
153.27 Кб
Скачать

билет 4. 1.Роль большого геологического и малого биологического круговорота веществ в почвообразовании и аккумуляции биогенных элементов почвы.

Основой динамического равновесия и стойкости биосферы является кругооборот веществ и превращения энергии, который состоит из многообразных процессов. Хорошо известны глобальные процессы кругооборота воды, кислорода, углерода, азота, фосфора, микроэлементов на Земле. В.Р. Вильямс писал, что единственный способ придать чему-то конечному свойства бесконечного – это заставить конечное вращаться по замкнутой кривой, то есть вовлечь его в кругооборот. В этом высказывании есть доля философского и религиозного понимания сути кругооборотов веществ и превращения энергии. Выделяют два основных кругооборота: большой (геологический) и малый (биологический).

Геологический кругооборот веществ имеет наибольшую скорость в горизонтальном направлении между сушей и морем. Смысл большого кругооборота в том, что горные породы подвергаются разрушению, выветриванию, а продукты выветривания, в том числе растворимые в воде питательные вещества, сносятся потоками воды в Мировой океан с образованием морских напластований и возвращаются на сушу лишь частично, например, с осадками или с извлеченными человеком из воды организмами. Далее в течение длительного временного отрезка протекают медленные геотектонические изменения – движение материков, поднятие и опускание морского дна, вулканические извержения и т.д., в результате которых образовавшиеся напластования возвращаются на сушу и процесс начинается вновь.

Малый кругооборот, являясь частью большого, происходит на уровне биогеоценоза. Он состоит в том, что питательные вещества почвы, вода, CO2 и другие вещества из атмосферы за счет фотосинтеза аккумулируются в веществе продуцентов (растений и некоторых бактерий), расходуются на построение тел и жизненные (обменные) процессы продуцентов и консументов. Затем в основном за счет редуцентов органические вещества разлагаются и частью минерализуются, вновь становятся доступными растениям и снова ими вовлекаются в поток вещества (кругооборот).

Скорость перемещения веществ при биологическом кругообороте значительно выше, чем при геологическом. Кругооборот (перемещение) химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии с протеканием биохимических превращений (реакций) носит название биогеохимического цикла. Годичные биогеохимические циклы приводят в движение примерно 480 млрд. т веществ, в основном биофильных элементов – углерода, азота, водорода, кислорода и др.

2.Понятие о емкости катионного обмена и степени насыщенности почвы основаниями.

(ЕКО) называется общее количество катионов, которое может быть вытеснено из почвы. ЕКО характеризует физико-химическую поглотительную способность почв и зависит от минерального и гранулометрического состава почв, а также от содержания в них гумуса. Емкость поглощения колеблется в широких пределах: она выше в суглинистых почвах, чем в песчаных, и выше в черноземах, чем в дерново- подзолистых. Органическая часть почвы обладает более высокой поглотительной способностью, чем минеральная. Поэтому несмотря на то что в составе мелкодисперсной фракции преобладают минеральные коллоиды, ЕКО тем выше, чем больше в почве гумуса, а увеличение гумусированности почвы не влияет на емкость поглощения минеральной части. Емкость катионного обмена возрастает также в условиях нейтральной и щелочной реакции, когда сильнее проявляется отрицательный заряд ацидоидов и может меняться в зависимости от энергии катиона вытеснителя. Различные почвы отличаются не только по ЕКО, но и по составу поглощенных катионов. Он разнообразен: все почвы содержат в поглощенном состоянии почти все катионы, среди них больше катионов кальция, магния, калия, аммония, присутствуют микроэлементы, катионы водорода и алюминия. Общее содержание поглощенных катионов оснований (кроме Н+ и А13+) называют суммой обменных оснований. На их долю в черноземах приходится до 80—90%; в дерново-подзолистых почвах и красноземах иногда 50% и более от ЕКО приходится на ионы водорода и алюминия. В солонцах и солончаках наряду с кальцием и магнием в поглощенном состоянии присутствует натрий. Сумма обменных оснований (S), выраженная в процентах от общей емкости катионного обмена (ЕКО), называется степенью насыщенности основаниями (V), которую определяют по формуле V= S+ ЕКО х 100%. По этому показателю почвы делятся на насыщенные (V > 80%) и ненасыщенные (V 50—70%) основаниями. Наилучшие условия для растений создаются при V в пределах 80—90% от ЕКО. При этом, однако, важны уровни насыщения ППК отдельными обменными катионами, особенно кальцием, магнием и калием. Уровни определяются так же, как и степень насыщенности основаниями. Буферность почвы - способность почвы противостоять резкому изменению концентрации веществ в почвенном растворе путём протекающих обменных реакций в сторону кислого или щелочного интервала. Она определяется находящимися в почвенном растворе угольной кислотой и ее солями, органическими кислотами и их солями и в основном зависит от свойств ТВ фазы. Среди этих свойств главные: количество и состав почвенных коллоидов, состав обменных катионов и емкость поглощения. Выше емкость - выше буферность - больше органического вещества в растворе.

3.Состав,свойства и агрономическая оценка каштановых почв.Мероприятия по окультуриванию почв сухих степей.

Каштановые почвы образовались в условиях засушливого климата при непромывном водном режиме. Периоды активного почвообразования — весна, осень, иногда раннее лето. В почвы сухих степей поступает меньше органического вещества, чем в черноземы. Ежегодный растительный опад не превышает 4 т/га. Дерновый процесс ослаблен в связи с более жесткими климатическими условиями. Летом под влиянием аэробных микроорганизмов растительные остатки минерализуются, весной и осенью — гумифицируются, зимой происходит денатурация гумуса и его накопление. Гумусообразование идет медленными темпами.В опаде содержится значительное количество зольных элементов (161 кг/га ежегодно). В подзонах темно-каштановых и каштановых почв в растительном опаде преобладают кремний, кальций, магний, калий, а в подзоне светло-каштановых почв имеется еще в значительном количестве натрий, входящий в поглощающий комплекс. Следовательно, наблюдается наложение на дерновый процесс солонцового процесса, особенно в связи с влиянием засоленных почвообразующих пород. Вследствие сорбирования катионов натрия высокодисперсными частицами разрушаются почвенные агрегаты, происходит диспергирование почвенной массы, а следовательно, потеря прочности структуры.В связи с недостаточным промачиванием почв из корнеобитаемых горизонтов до глубины промачивания вымываются в основном легкорастворимые соли. Одновременно формируется гипсоносный горизонт в результате взаимодействия Na2SО4 с разными формами кальция и вымывания гипса сверху. Карбонаты кальция и магния, сульфаты кальция перемещаются на незначительную глубину, образуя иллювиально-карбонатный горизонт, в котором много конкреций, пропиточных (мучнистых) или миграционных (мицеллярных) образований в зависимости от провинций. С увеличением содержания солей повышается значение рН. Водорастворимые соединения перемещаются преимущественно во время таяния снега.В сухих степях сильно выражена комплексность почвенного покрова в связи с наличием микрорельефа и засоленностью почвообразующих пород. Большую роль в возникновении неоднородности почвенного покрова играют слабая дренированность территории, аридность климата, эрозии и др.Тип каштановых почв умеренного пояса впервые был выделен В. В. Докучаевым (1883) в качестве зонального для сухих степей. В данном типе выделяют три подтипа почв: темно-каштановые, каштановые и светло-каштановые почвы.Выделяют фациальные термические группы или провинциальные подтипы: очень теплые периодически промерзающие, теплые кратковременно промерзающие, теплые промерзающие, умеренно теплые промерзающие, умеренно длительно промерзающие. В группе очень теплых почв не встречаются светло-каштановые, а для группы умеренно длительно промерзающих характерны только темно-каштановые почвы. Однако в практическом отношении более приемлемо деление почв на следующие фации: южноевропейская (теплая), восточноевропейская и казахстанская (умеренная), восточноевропейская (глубинно-холодная). В каждом подтипе различают роды: обычные, солонцеватые, солончаковатые, карбонатные, глубоковскипающие, карбонатные перерытые, глубокосолонцеватые, остаточно-солонцеватые, осолоделые, остаточно-луговые, контактно-луговатые, бескарбонатные, слитые, неполноразвитые.На виды почвы подразделяют по мощности гумусового горизонта, по степени солонцеватости и по степени смытости. По мощности гумусового слоя (А + В1) выделяют мощные (более 50 см), среднемощные (30...50 см), маломощные (20...30 см), маломощные укороченные (менее 20 см) почвы. По степени солонцеватости почвы бывают несолонцеватые (содержание натрия менее 3 % емкости поглощения), слабосолонцеватые (3...5 %), среднесолонцеватые (5...10 %) и сильносолонцеватые (10...15 %). По степени смытости непахотные почвы подразделяют на слабосмытые (смыто не более половины горизонта А), среднесмытые (горизонт А смыт более чем наполовину или полностью), сильносмытые (горизонт В смыт частично или полностью). Пахотные почвы по степени смытости также бывают слабосмытые (смыто до 30 % первоначальной мощности горизонтов А + В1 в пашню вовлекается самая верхняя часть горизонта В1); среднесмытые (смыто 30...50 % мощности горизонтов А + В1 в пашню вовлекается значительная часть или весь горизонт В1); сильносмытые (смыта большая часть горизонтов А + В1).Темно-каштановые почвы расположены на равнинных территориях в северной подзоне сухих степей под ковыльно-типчаковой растительностью с примесью разнотравья. Профиль почв имеет следующее морфологическое строение: А — В1 — В2 — ВК(ВСК) — Ск. Для этих почв характерен хорошо выраженный гумусовый горизонт А, он имеет темно-серую с коричневым оттенком или коричнево-темно-серую окраску, комковатую, комковато-зернистую или пороховато-мелкозернистую структуру на целине и пылевато-комковатую — в пахотных почвах. Мощность горизонта А колеблется от 25...40 см (южноевропейская фация) до 10...15 см (восточносибирская фация); вскипание наблюдается в нижней части горизонта; переход постепенный. Горизонт В1 темно-бурый, серо-бурый или коричневатый, уплотненный, комковатый, а горизонт В2 неравномерно прогумусированный с потеками гумуса, плотноватый, призмовидно-комковатый. Мощность гумусового слоя (А + В1) в южноевропейской фации составляет 60...70 см, в восточноевропейской и казахстанской — 35...45 (60) см; переход постепенный. Иллювиально-карбонатный горизонт ВК(ВСК) темно-бурый или желтый, с гумусовыми затеками, призматический, плотный, содержит много белоглазки, а иногда и псевдомицелия, мучнистых скоплений, пропиточных пятен, натечных корок (на щебне в межгорных котловинах в пределах фации умеренно длительнопромерзающих почв). Ск — почвообразующая желтоватая порода с выделениями легкорастворимых солей и гипса (в основном с глубины 1,5...2,0 м). В восточносибирской фации темно-каштановых почв выделения гипса и легкорастворимых солей отсутствуют (южный Алтай, Хакасия, Тува, Забайкалье).

билет 5. 1.Понятие о коре выветривания.Виды выветривания.

На поверхности континентов горные породы попадают в обстановку, которая

более или менее от условий их образования.

Дневная поверхность, как геологи называют границу земной коры и

атмосферы, характеризуется небольшими величинами давления и температуры - в

сотни и тысячи раз меньше тех величин, при которых возникают магматогенные

или метаморфогенные минералы. Давление и особенно температура на

поверхности суши испытывают значительные колебания в течении суток и года.

Мощным фактором воздействия является жидкая вода, содержащая растворённые

химически активные соединения. На горные породы здесь также действует целая

серия сложных процессов, связанных с развитием живых организмов и

почвообразованием. Всё это обуславливает неустойчивость минералов,

возникших в иных условиях, и возникновение новых минералов.

Выветриванием называется сумма физических, химических и физико-

химических процессов преобразования горных пород и слагающих их минералов

на поверхности суши под влиянием факторов и условий географической среды.

Не следует думать, что выветривание связано с деятельностью ветра. Ветровая

деятельность имеет весьма отдалённое отношение к процессам выветривания.

Чтобы избежать этой неясности смыслового и буквального значения термина

”выветривание”, А.Е.Ферсман в 1922г предложил процессы преобразования

горных пород и минералов на поверхности обозначить термином “гипергенез”

(от греч hyper – сверху, над).

Процесс выветривания очень сложен и включает многочисленные частные

процессы и явления – механические, физико-химические, химические,

биогеохимические.

Чисто физические (механические) явления приводят к дезинтеграции горных

пород: к механическому их измельчению без изменения минералогического и,

следовательно, химического состава. Механическая дезинтеграция пород

происходит в результате неодинакового объёма и линейного расширения

породообразующих минералов под влиянием сезонного и суточного колебания

температуры. Порода рассекается густой сетью тонких и тончайших трещин. В

эти трещины поступает вода , вследствие чего в них возникает капиллярное

давление. Его величина достигает значительной величины. Например, в трещины

шириной 0,001мм капиллярное давление составляет около 1,5кг/см (при обычной

температуре), а в трещинах толщиной в тысячу раз более тонких(1*10мм)-

около1500кг/см. При расширении трещин начинают действовать явления

замерзания -размерзания воды с изменением объёма.

В итоге массивная кристаллическая порода, сохраняя свой исходный состав,

теряет монолитность и начинает разрушаться. В первую очередь проявляются

скрытые напряжение , возникшие при образовании разрушающейся породы, и

проявляются отдельности – участки породы, ограниченные трещинами и

обладающие определённой формой. Особенно эффективно проявляются округлые

концентрически-скорлуповатые отдельности, образующиеся при выветривании

некоторых эффузивных и гипабиссальных пород.

Механическая дезинтеграция плотных горных пород приводит к образованию

обширных развалов, глыб и россыпей щебня (курумов), коллювиальных скоплений

(от лат colluvio-скопление) щебня у подножия обрывов, протяжённых каменных

потоков по склонам. Это типично для полярных, пустынных и высокогорных

ландшафтов.

Дезинтеграция плотных горных пород, обрзование в них системы трещин и

микрощелей обуславливает, с одной стороны, их хорошую водопроницае- мость,

а с другой – резко увеличивает реакционную поверхность выветривающихся

пород. Это создаёт условия для активизации разнообразных физико-химических,

химических и биогеохимических реакций. Осуществление этих реакций возможно

только при наличии свободной жидкой воды.