Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика 1-41.docx
Скачиваний:
112
Добавлен:
24.01.2016
Размер:
3.14 Mб
Скачать

Бегущая волна

Бегущая волна, волновое движение, при котором поверхность равных фаз (фазовые волн, фронты) перемещается с конечной скоростью. С бегущей волной, групповая скорость которой отлична от нуля, связан перенос энергии, импульса или других характеристик. В рамках применимости суперпозиции принципа (линейные системы) две одинаковые периодические бегущие волны, распространяющиеся в противоположных направлениях, образуют т. н. стоячую волну. При разных амплитудах возникает частично бегущая волна, которая характеризуется коэффициентом бегучести волны (КБВ), или коэффициентом стоячести волны (КСВ), или коэффициентом отражения Г, равным отношению амплитуд встречных волн, причём КСВ = 1/КБВ = (1 + |Г|2)/(1 -|Г|2) Для оптимистичной передачи энергии необходимо согласование линий передач (получение внутри линии режима бегущей волны, когда КСВ = 1, Г=0). Для электрических цепей постоянного тока этот режим соответствует равенству внутреннего сопротивления источника сопротивлению нагрузки.

Вопрос №25. Фа́зовая ско́рость — скорость перемещения точки, обладающей постоянной фазой колебательного движения, в пространстве вдоль заданного направления. Обычно рассматривают направление, совпадающее с направлениемволнового вектора, и фазовой называют скорость, измеренную именно в этом направлении, если противное не указано явно (то есть если явно не указано направление, отличное от направления волнового вектора). Фазовая скорость по направлению волнового вектора совпадает со скоростью движения фазового фронта (поверхности постоянной фазы). Ее можно рассматривать при желании как векторную величину.Наиболее употребительное обозначение: .

Основная формула, определяющая фазовую скорость (монохроматической) волны в одномерном пространстве или фазовую скорость вдоль волнового вектора для волны в пространстве большей размерности: ,

которая является прямым следствием того факта, что фаза плоской волны в однородной среде естьдля одномерного случая илидля размерности, большей единицы.

Фазовая скорость электромагнитной волны

В вакууме для электромагнитной волны любой частоты (по крайней мере, в тех диапазонах частот и интенсивностей, которые исследованы) фазовая скорость, измеренная в направлении волнового вектора, всегда равна одной и той же величине — скорости света в вакууме, универсальной константе.В средах закон дисперсии электромагнитных волн достаточно сложен (см. Дисперсия света), и фазовая скорость может заметно меняться.

Групповая скорость — это величина, характеризующая скорость распространения «группы волн» - то есть более или менее хорошо локализованной квазимонохроматической волны (волны с достаточно узким спектром). Обычно интерпретируется как скорость перемещения максимума амплитудной огибающей квазимонохроматического волнового пакета (или цуга волн). В случае рассмотрения распространения волн в пространстве размерностью больше единицы подразумевается как правило волновой пакет близкий по форме к плоской волне.Групповая скорость определяется динамикой физической системы, в которой распространяется волна (конкретной среды, конкретного поля итп). В большинстве случаев подразумеваетсялинейность этой системы (точно или приближенно).Для одномерных волн групповая скорость вычисляется из закона дисперсии:

,

где —угловая частота, —волновое число.

Групповая скорость волн в пространстве (например, трехмерном или двумерном) определяется градиентом частоты по волновому вектору :

или (для трехмерного пространства):

  • Замечание: групповая скорость вообще говоря зависит от волнового вектора (в одномерном случае - от волнового числа), то есть вообще говоря различна для разной величины и для разных направлений волнового вектора.

Сферическая волна — волна, радиально расходящаяся от источника. Её волновой фронт представляет собой сферу. Простейшим примером почти сферической волны является световая волна, испускаемая лампочкой. В общем случае сферическая волна не обязательно должна быть идеально сферической формы. Для скалярной волны уравнение имеет вид

(1.2)

Для расходящейся от осциллятора волны в формуле (1.2) используется вместо знак, для сходящейся —. Такая волна удовлетворяетволновому уравнению, а суперпозиция сходящейся и расходящейся волн (в частности, и стоячей сферической волны) также является решением волнового уравнения. Функция , вообще говоря, может быть любой.

Волновое уравнение в математике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.В многомерном случае однородное волновое уравнение записывается в виде

,

где —оператор Лапласа, — неизвестная функция,— время,— пространственная переменная,—фазовая скорость.В одномерном случае уравнение называется также уравнением колебания струны или уравнением продольных колебаний стержня и записывается в виде

.

Допустимо также рассматривать неоднородное волновое уравнение

,

где — некая заданная функция внешнего воздействия (внешней силы).

Стационарным вариантом волнового уравнения является уравнение Лапласа (уравнение Пуассона в неоднородном случае).Задача нахождения нормальных колебаний системы, описываемой волновым уравнением, приводит к задаче на собственные значения для уравнения Лапласа, то есть к нахождению решений уравнения Гельмгольца, получающегося подстановкой

или .

Вопрос №26. ИНТЕРФЕРЕНЦИЯ ВОЛН - такое наложение волн, при котором происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других, в зависимости от соотношения между фазами этих волн.

Необходимые условия для наблюдения интерференции:

1) волны должны иметь одинаковые (или близкие) частоты, чтобы картина, получающаяся в результате наложения волн, не менялась во времени (или менялась не очень быстро, что бы её можно было успеть зарегистрировать);

2) волны должны быть однонаправленными (или иметь близкое направление); две перпендикулярные волны никогда не дадут интерференции (попробуйте сложить две перпендикулярные синусоиды!). Иными словами, складываемые волны должны иметь одинаковые волновые векторы (или близконаправленные).

        Волны, для которых выполняются эти два условия, называются КОГЕРЕНТНЫМИ. Первое условие иногда называют временной когерентностью, второе - пространственной когерентностью.

       Рассмотрим в качестве примера результат сложения двух одинаковых однонаправленных синусоид. Варьировать будем только их относительный сдвиг. Иными словами, мы складываем две когерентные волны, которые отличаются только начальными фазами (либо их источники сдвинуты друг относительно друга, либо то и другое вместе).

        Если синусоиды расположены так, что их максимумы (и минимумы) совпадают в пространстве, произойдет их взаимное усиление.

        Если же синусоиды сдвинуты друг относительно друга на полпериода, максимумы одной придутся на минимумы другой; синусоиды уничтожат друг друга, то есть произойдет их взаимное ослабление.

        Математически это выглядит так. Складываем две волны:

здесь х1 и х2 - расстояния от источников волн до точки пространства, в которой мы наблюдаем результат наложения. Квадрат амплитуды результирующей волны (пропорциональный интенсивности волны) дается выражением:

        Максимум этого выражения есть 4A2, минимум - 0; всё зависит от разности начальных фаз и от так называемой разности хода волн :

        При в данной точке пространства будет наблюдаться интерференционный максимум, при- интерференционный минимум.

        В нашем простом примере источники волн и точка пространства, где мы наблюдаем интерференцию, находятся на одной прямой; вдоль этой прямой интерференционная картина для всех точек одинакова. Если же мы сдвинем точку наблюдения в сторону от прямой, соединяющей источники, мы попадем в область пространства, где интерференционная картина меняется от точки к точке. В этом случае мы будем наблюдать интерференцию волн с равными частотами и близкими волновыми векторами.

Вопрос №27. Стоя́чая волна́ — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения.

Примерами стоячей волны могут служить колебания струны, колебания воздуха в органной трубе[1]; в природе — волны Шумана.

Чисто стоячая волна, строго говоря, может существовать только при отсутствии потерь в среде[2] и полном отражении волн от границы. Обычно, кроме стоячих волн, в среде присутствуют и бегущие волны, подводящие энергию к местам её поглощения или излучения.В случае гармонических колебаний в одномерной среде стоячая волна описывается формулой:

,

где u — возмущения в точке х в момент времени t, —амплитуда стоячей волны, — частота ,k — волновой вектор, —фаза.

Стоячие волны являются решениями волновых уравнений. Их можно представить себе как суперпозицию волн, распространяющихся в противоположных направлениях.

При существовании в среде стоячей волны, существуют точки, амплитуда колебаний в которых равна нулю. Эти точки называются узлами стоячей волны. Точки, в которых колебания имеют максимальную амплитуду, называются пучностями.

В одномерном случае две волны одинаковой частоты, длины волны и амплитуды, распространяющиеся в противоположных направлениях (например, навстречу друг другу), будут взаимодействовать, в результате чего может возникнуть стоячая волна. Например, гармоничная волна, распространяясь вправо, достигая конца струны, производит стоячую волну. Волна, что отражается от конца, должна иметь такую ​​же амплитуду и частоту, как и падающая волна.

Рассмотрим падающую и отраженную волны в виде:

где:

  • y0 — амплитуда волны,

  • —циклическая (угловая) частота, измеряемая в радианах в секунду,

  • k — волновой вектор, измеряется в радианах на метр, и рассчитывается как поделённое на длину волны,

  • x и t — переменные для обозначения длины и времени.

Поэтому результирующее уравнение для стоячей волны y будет в виде суммы y1 и y2:

Используя тригонометрические соотношения, это уравнение можно переписать в виде:

Если рассматривать моды и антимоды, то расстояние между соседними модами / антимодами будет равно половине длины волны.

Энергия упругой волны.

Волновое движение сопровождается переносом энергии от источника колебаний в различные точки среды. Эта энергия складывается из кинетической энергии колеблющихся частиц и потенциальной энергии деформированных участков среды. Энергия, переносимая

волной через некоторую поверхность в единицу времени, называется потоком энергии через эту поверхность. Плотностью потока энергии или интенсивностью волны называется количество энергии, переносимое волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.

Пусть участок волнового фронта площадью за времяпереместился на расстояние, вследствие чего частицы среды в объеме цилиндра высотойи основаниемприводятся в колебательное движение (рис.8.4). Обозначим черезсреднюю энергию частиц, содержащихся в единичном объеме (плотность энергии). Если считать, что плотность энергии везде одинакова, то за времячерез площадкупройдет энергия. Тогда интенсивность волны равна

(8.3)

или, в векторной форме,

.

Вектор называется вектором Умова. Он перпендикулярен фронту волны, указывает направление распространения энергии и по модулю равен плотности потока энергии. Объемную плотность энергииможно выразить через энергию каждой частицы и количество частицв единице объема:

,

(8.4)

где – плотность среды. Подставив это выражение в (8.3), получим:

.

Таким образом, интенсивность упругой волны пропорциональна квадрату амплитуды и квадрату собственной частоты колебаний частиц, плотности среды и скорости распространения волны.

Соседние файлы в предмете Физика