FTF 1 semestr.SHECOLDIN / 38
.docxВязкость жидкостей
Динамический коэффициент вязкости
Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Справедлив общий закон внутреннего трения — закон Ньютона:
![]()
Коэффициент
вязкости
(динамическая
вязкость) может быть получен на основе
соображений о движениях молекул.
Очевидно, что
будет
тем меньше, чем меньше время t «оседлости»
молекул. Эти соображения приводят к
выражению для коэффициента вязкости,
называемому уравнением
Френкеля-Андраде:
![]()
Иная
формула, представляющая коэффициент
вязкости, была предложена Бачинским.
Как показано, коэффициент вязкости
определяется межмолекулярными силами,
зависящими от среднего расстояния между
молекулами; последнее определяется
молярным объёмом вещества
.
Многочисленные эксперименты показали,
что между молярным объёмом и коэффициентом
вязкости существует соотношение
![]()
где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского.
Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления.
Ламина́рное тече́ние (лат. lāmina — «пластинка») — течение, при котором жидкость или газ перемещается слоями без перемешивания и пульсаций (то есть беспорядочных быстрых изменений скорости и давления).
Турбуле́нтность, устар. турбуле́нция (от лат. turbulentus — бурный, беспорядочный), турбуле́нтное тече́ние — явление, заключающееся в том, что при увеличении скорости течения жидкости или газа в среде самопроизвольно образуются многочисленные нелинейные фрактальные волны и обычные, линейные различных размеров, без наличия внешних, случайных, возмущающих среду сил и/или при их присутствии. Для расчёта подобных течений были созданы различные модели турбулентности. Волны появляются случайно. То есть их размер и амплитуда меняется хаотически в некотором интервале. Они возникают чаще всего либо на границе, у стенки, и/или при разрушении или опрокидывании волны. Они могут образоваться на струях. Экспериментально ее можно наблюдать на конце струи пара из электрочайника. Турбулентность экспериментально открыта английским инженером Рейнольдсом в 1883 году при изучении течения несжимаемой жидкости (воды) в трубах.
Число
Рейно́льдса (
), —
безразмерная величина, характеризующая
отношение нелинейного и диссипативного
членов в уравнении
Навье — Стокса[1].
Число Рейнольдса также считается критерием
подобия течения
вязкой жидкости.
Число Рейнольдса определяется следующим соотношением:
![]()
где
-
— плотность среды,
кг/м3; -
—
характерная скорость,
м/с; -
—
характерный
размер, м; -
— динамическая
вязкость среды,
Н·с/м2; -
— кинематическая
вязкость среды,
м2/с(
) ; -
—
объёмная
скорость потока; -
—
площадь
сечения трубы.
Тече́ние Пуазёйля — ламинарное течение жидкости через каналы в виде прямого кругового цилиндра или слоя между параллельными плоскостями. Течение Пуазёйля — одно из самых простых точных решений уравнений Навье — Стокса. Описывается законом Пуазёйля(Хагена — Пуазёйля).
Закон Пуазёйля (иногда закон Хагена — Пуазёйля) — это физический закон так называемого течения Пуазёйля, то есть установившегося течения вязкой несжимаемой жидкости в тонкой цилиндрической трубке. Закон установлен эмпирически в 1839 году Г. Хагеном, а в 1840—1841 годы — независимо Ж. Л. Пуазёйлем. Теоретически объяснён Дж. Г. Стоксом в 1845 году.
При установившемся ламинарном движении вязкой несжимаемой жидкости сквозь цилиндрическую трубу круглого сечения секундный объёмный расход прямо пропорционален перепаду давления на единицу длины трубы и четвертой степени радиуса и обратно пропорционален коэффициенту вязкости жидкости.
![]()
где
-
—
перепад давления на
концах капилляра, Па; -
—
секундный
объёмный расход жидкости, м³/с; -
— радиус капилляра,
м; -
— диаметр капилляра,
м; -
—
коэффициент
динамической вязкости, Па·с; -
— длина трубы,
м.
Формула используется для определения вязкости жидкостей. Другим способом определения вязкости жидкости является метод, использующий закон Стокса.
