Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
35
Добавлен:
10.06.2015
Размер:
353.79 Кб
Скачать

2 Метод излучательности

В этой лекции уже говорилось, что освещенность поверхности определяется собственным излучением тела и отраженными лучами, падающими от других тел (источников). Модель излучательности включает оба эти фактора и основана на уравнениях энергетического баланса. При этом выполняемые расчеты учитывают только взаимное расположение элементов сцены и не зависят от положения наблюдателя.

Представим сцену из элементов (участков поверхностей). Освещенность будем моделировать как количество энергии, излучаемое поверхностью. Для каждого элемента это количество энергии складывается из собственной энергиии отраженной доли энергии, полученной от других объектов. Предполагается, что для каждой пары элементов с номерамиможно определить, какая доля энергии одного попадает на другой. Пусть- коэффициент отражения энергииэлементом. Тогда полная энергия, излучаемая этим элементом, будет определяться уравнением.

Таким образом, мы получаем систему уравнений для нахождения значений , которая в матричном виде выглядит следующим образом:

где - единичная матрица,и- векторы излучаемой и собственной энергий, а матрицасостоит из элементов. Поскольку часть излучения элемента может не попадать ни на один из оставшихся, то

а это условие в сочетании с тем, что (отражение не является полным), приводит к тому, что матрица системы имеет так называемое диагональное преобладание, т.е. диагональный элемент по абсолютной величине больше, чем сумма остальных элементов строки. В таком случае система уравнений имеет решение, которое можно найти с помощью численных методов.

Итак, шаги алгоритма изображения сцены сводятся к следующим:

  1. Сцена разбивается на отдельные участки, для каждого из которых определяются значения .

  2. Находятся значения для каждой из трех основных компонент цвета.

  3. Для выбранной точки наблюдения стоится проекция с удалением невидимых граней и осуществляется закрашивание, использующее значения для задания интенсивности. При этом могут использоваться какие-либо алгоритмы, позволяющие сгладить изображение.

Сложным моментом в модели излучательности является расчет коэффициентов .

Рисунок 12.2.  Два элемента сцены

Рассмотрим один пример. Пусть имеется два элемента сцены и(Рисунок 12.2). Поскольку используется диффузная модель освещения, то доля энергии малого участкас нормалью, излучаемая под угломк этой нормали, пропорциональна косинусу угла. Следовательно, в направлении элементарного участкауходит доля энергии, пропорциональная косинусу угла междуи отрезком, который соединяет эти участки. Соответственно, получаемая вторым участком доля этой энергии будет пропорциональна косинусу угла между нормальюи этим же отрезком. Итак, доля энергии, получаемая элементомот элемента ,-, где- расстояние между элементами. Кроме того, необходимо учесть, что излучаемая элементарным участком энергия равномерно распределена по всем направлениям. И, наконец, в каждой сцене одни объекты могут частично экранировать другие, поэтому надо ввести коэффициент, определяющий степень видимости объекта с позиции другого. Далее полученное выражение интегрируется пои, что также может быть сложной задачей.

Отсюда видно, насколько трудоемкой может оказаться процедура вычисления коэффициентов . Поэтому, как правило, используются приближенные методы их вычисления. В частности, можно рассматривать поверхности объектов как многогранники, тогда элементами сцены будут плоские многоугольники, для которых формулы несколько упрощаются.

Соседние файлы в папке ЛР КГГ(новые лабы)