
- •Содержание
- •1 Формальные языки и грамматики
- •1.1 Основные понятия теории формальных языков
- •Определение Цепочка, которая не содержит ни одного символа, называется пустой цепочкой и обозначается .
- •1.2 Способы задания языков
- •1.2.1 Формальные грамматики
- •1.2.1.1 Определение формальной грамматики
- •Определение Цепочка (vtvn)* выводима из цепочки в грамматике(обозначается*), если существует последовательность цепочек (n0) такая, что .
- •1.2.1.3 Эквивалентность грамматик
- •1.2.2 Формы Бэкуса - Наура
- •1.2.3 Диаграммы Вирта
- •1.2.5 Механизмы распознавания языков
- •1.2.5.1 Определение распознавателя
- •1.2.5.2 Схема работы распознавателя
- •1.2.5.3 Классификация распознавателей
- •2 Регулярные грамматики и языки
- •2.1 Регулярные выражения
- •2.2 Лемма о разрастании языка
- •2.3 Конечные автоматы
- •2.3.1 Определение конечного автомата
- •2.3.2 Распознавание строк конечным автоматом
- •Существуют следующие способы представления функции переходов: - командный способ.Каждую команду ка записывают в форме , где.
- •2.3.3 Преобразование конечных автоматов
- •2.3.3.1 Преобразование конечного автомата к детерминированному виду
- •Алгоритм Преобразование нка в дка
- •2.3.3.2 Минимизация конечного автомата
- •2.3.3.2.1 Устранение недостижимых состояний ка
- •2.3.3.2.2 Объединение эквивалентных состояний ка Алгоритм Объединение эквивалентных состояний ка
- •2.4 Взаимосвязь способов определения грамматик
- •2.4.1 Построение ка по регулярной грамматике
- •Выход:ка.
- •3 Контекстно-свободные языки и грамматики
- •3.1 Задача разбора
- •3.1.1 Вывод цепочек
- •Определение Цепочка (vtvn)* выводима из цепочки в грамматике(обозначается*), если существует последовательность цепочек (n0) такая, что .
- •3.1.2 Дерево разбора
- •3.1.2.1 Нисходящее дерево разбора
- •3.1.2.2 Восходящее дерево разбора
- •3.1.3 Однозначность грамматик
- •3.2 Преобразование кс-грамматик
- •3.2.1 Проверка существования языка грамматики
- •3.2.2 Устранение недостижимых символов
- •Алгоритм Устранение нетерминалов, не порождающих терминальных строк Вход: кс-грамматика.
- •Алгоритм Устранение недостижимых символов Вход: кс-грамматика.
- •Определим множество достижимых символов z грамматики g, т.Е. Множество
- •3.2.3 Устранение -правил Алгоритм Устранение -правил Вход: кс-грамматика.
- •3.2.4 Устранение цепных правил Алгоритм Устранение цепных правил Вход: кс-грамматика.
- •3.2.5 Левая факторизация правил Алгоритм Устранение левой факторизации правил Вход: кс-грамматика.
- •3.2.6 Устранение прямой левой рекурсии Алгоритм Устранение прямой левой рекурсии Вход: кс-грамматика.
- •3.3 Автомат с магазинной памятью
- •3.3.1 Определение мп-автомата
- •3.3.2 Разновидности мп-автоматов
- •3.3.3 Взаимосвязь мп-автоматов и кс-грамматик
- •3.3.3.1 Построение мп-автомата по кс-грамматике
- •3.3.3.2 Построение расширенного мп-автомата по кс-грамматике
- •3.4 Нисходящие распознаватели языков
- •3.4.1 Рекурсивный спуск
- •3.4.1.1 Сущность метода
- •3.4.1.2 Достаточные условия применимости метода рекурсивного спуска
- •3.4.2 Распознаватели ll(k)-грамматик
- •3.4.2.1 Определение ll(k)-грамматики
- •3.4.2.2 Необходимое и достаточное условие ll(1)-грамматики
- •3.4.2.3 Построение множества first(1, a)
- •3.4.2.4 Построение множества follow(1, a)
- •3.4.2.5 Алгоритм «сдвиг-свертка» для ll(1)-грамматик
- •Шаг 6. Получили следующую цепочку вывода:
- •3.5.1.1.2 Поиск основы сентенции грамматики
- •3.5.1.1.3 Построение множеств l(a) и r(a)
- •3.5.1.1.5 Алгоритм «сдвиг - свертка» для грамматик простого предшествования
- •Шаг 3. Функционирование распознавателя для цепочки (((aa)a)a) показано в таблице 3.9.
- •3.5.1.2 Грамматика операторного предшествования
- •3.5.1.2.1 Определение грамматики операторного предшествования
- •3.5.1.2.2 Построение множеств Lt(a) и Rt(a)
- •3.5.1.2.4 Алгоритм «сдвиг-свертка» для грамматики операторного предшествования
- •3.5.2 Распознаватели lr(k)-грамматик
- •3.6 Соотношение классов кс-грамматик и кс-языков
- •3.6.1 Соотношение классов кс-грамматик
- •3.6.2 Соотношение классов кс-языков
- •4 Принципы построения языка
- •4.1 Лексика, синтаксис и семантика языка
- •4.2 Определение транслятора, компилятора, интерпретатора и ассемблера.
- •4.3 Общая схема работы компилятора
- •4.4 Лексический анализ
- •4.4.1 Задачи лексического анализа
- •4.4.2 Диаграмма состояний с действиями
- •4.4.3 Функция scanner
- •4.5 Синтаксический анализатор программы
- •4.5.1 Задача синтаксического анализатора
- •4.5.2 Нисходящий синтаксический анализ
- •Теорема Достаточные условия применимости метода рекурсивного спуска
- •4.6 Семантический анализ программы
- •4.6.1 Обработка описаний
- •4.6.2 Анализ выражений
- •4.6.3 Проверка правильности операторов
- •4.7 Генерация кода
- •4.7.1 Формы внутреннего представления программы
- •4.7.1.1 Тетрады
- •4.7.1.2 Триады
- •4.7.1.3 Синтаксические деревья
- •4.7.1.4 Польская инверсная запись
- •Составной оператор begin s1; s2;...; Sn end в полиЗе записывается как s1 s2... Sn.
- •4.7.1.5 Ассемблерный код и машинные команды
- •4.7.2 Преобразование дерева операций в код на языке ассемблера
- •4.8 Оптимизация кода
- •4.8.1 Сущность оптимизации кода
- •4.8.2 Критерии эффективности результирующей программы
- •4.8.3 Методы оптимизации кода
- •4.8.4 Оптимизация линейных участков программ
- •4.8.4.1 Свертка объектного кода
- •4.8.4.2 Исключение лишних операций
- •4.8.5 Оптимизация логических выражений
- •4.8.6 Оптимизация циклов
- •4.8.7 Оптимизация вызовов процедур и функций
- •4.8.9 Машинно-зависимые методы оптимизации
- •4.8.9.1 Распределение регистров процессора
- •4.8.9.2 Оптимизация кода для процессоров, допускающих распараллеливание вычислений
- •5 Формальные методы описания перевода
- •5.1 Синтаксически управляемый перевод
- •5.1.1 Схемы компиляции
- •5.1.4 Практическое применение су-схем
- •5.2 Транслирующие грамматики
- •5.2.1 Понятие т-грамматики
- •5.3 Атрибутные транслирующие грамматики
- •5.3.1 Синтезируемые и наследуемые атрибуты
- •5.3.2 Определение и свойства ат-грамматики
- •5.3.3 Формирование ат-грамматики
- •Решение
Алгоритм Преобразование нка в дка
Вход: НКА
.
Выход: ДКА
.
Шаг 1. Пометить
первый столбец таблицы переходов
ДКА начальным состоянием (множеством
начальных состояний) НКА
.
Шаг 2. Заполняем
очередной столбец таблицы переходов
,
помеченный символами
,
для этого определяем те состояния
,
которые могут быть достигнуты из каждого
символа строки
при
каждом входном символе
.
Поместить каждое найденное множество
(в том числе
)
в соответствующие позиции столбца
таблицы
,
т.е.:
для некоторого
}
Шаг 3. Для каждого
нового множества
(кроме
),
полученного в столбце
таблицы переходов
,
добавить новый столбец в таблицу,
помеченный
.
Шаг 4. Если в таблице
переходов КА
есть столбец с незаполненными позициями,
то перейти к шагу 2.
Шаг 5. Во множество
ДКА
включить каждое множество, помечающее
столбец таблицы переходов
и содержащее
НКА
.
Шаг 6. Составить
таблицу новых обозначений множеств
состояний и определить ДКА
в этих обозначениях.
Этот алгоритм обеспечивает отсутствие недостижимых состояний ДКА, но не гарантирует его минимальности.
Пример Пример
2.1. Дана
регулярная грамматика
с правилами
.
Построить по регулярной грамматике КА
и преобразовать полученный автомат к
детерминированному виду.
Построим по НКА
из примера 2.1 ДКА
.
1 Строим таблицу
переходов для ДКА
(таблица 2.2).
Таблица 2.2 –
Построение функции переходов для ДКА
-
Шаг
1
2
3
4
5
6
7
F
S
A, B
A, N
B, N
A
N
B
a
A, B
A, N
A
N
A
N
b
B, N
N
B
N
B
2 Во множество
заключительных состояний автомата
включим элементы
.
3 Введем следующие
новые обозначения состояний автомата
:
(A,B)=С,
(A,
N)=D,
(B,
N)=E.
4 Искомый ДКА
определяется следующей пятеркой
объектов:
,
,
функция переходов задана таблицей 2.3,
,
.
Таблица 2.3 – Функция
переходов для ДКА
-
S
A
B
С
D
E
N
a
C
A
N
D
A
N
b
N
B
E
N
B
Граф полученного ДКА представлен на рисунке 2.1.
Рисунок 2.1 – Граф ДКА
2.3.3.2 Минимизация конечного автомата
Конечный автомат может содержать лишние состояния двух типов: недостижимые и эквивалентные состояния.
Определение Два
различных состояния
и
в конечном автомате
называютсяn-эквивалентными,
nN{0},
если, находясь в одном их этих состояний
и получив на вход любую цепочку символов
:
T*,
||
n,
автомат может перейти в одно и то же
множество конечных состояний.
Определение Состояние q КА называется недостижимым, если к нему нет пути из начального состояния автомата.
Определение КА, не содержащий недостижимых и эквивалентных состояний, называется приведенным или минимальным КА.
В теории КА доказано, что каждое регулярное множество распознается единственным для данного множества ДКА с минимальным числом состояний. Рассмотрим алгоритмы построения минимального ДКА.