Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матем / Лекции / Элементы теории множеств Конспект лекции.doc
Скачиваний:
199
Добавлен:
10.06.2015
Размер:
153.09 Кб
Скачать

Лекция № 2

1.Понятие множества 1

2.Способы задания множества 3

3.Отношения между множествами 5

4.Основные операции над множествами 7

5.Свойства объединения и пересечения множеств 10

6.Разбиение множества на классы. Классификация 11

7.Число элементов объединения и разности двух конечных множеств 12

8.Примеры решения задач 13

  1. Понятие множества

Одно из основных понятий современной математики — понятие множества. Оно является первичным, т. е. не поддается определению через другие, более простые понятия. С понятием множества мы встречаемся довольно часто: множество студентов нашего института, множество преподавателей, множество изучаемых дисциплин и т. д.

Хотя в силу первичности понятия множества нельзя дать ему строгое определение, но можно воспользоваться описательным определением, предложенным одним из создателей теории множеств – немецким математиком Георгом Кантором (1845-1918). Он сказал: «Множество есть многое, мыслимое нами как единое».

Приведенные примеры обладают одним существенным свойством: все эти множества состоят из определенного конечного числа объектов, которые мы будем называть элементами множества. При этом каждый из объектов данного вида либо принадлежит, либо не принадлежит рассматриваемому множеству. Например, если мы рассмотрим множество студентов некоторой учебной группы, то, обратившись к списку этой группы, мы можем утверждать, что студент Иванов принадлежит этому множеству, а студент Петров уже не принадлежит в связи с отчислением.

Множества, включающие только такие объекты, принадлежность или не принадлежность которых к тому или иному множеству не вызывает сомнения, называются четкими множествами. Поскольку каждый рассматриваемый объект либо принадлежит, либо не принадлежит к рассматриваемому четкому множеству, эти множества всегда имеют ясно очерченные границы. Четким множествам противопоставлены нечеткие или «лингвистические» множества, включающие такие объекты, которые могут быть отнесены к тому или иному множеству лишь с определенной степенью достоверности. Понятие нечетких множеств (fuzzy sets) было впервые введено в 1965 году американским математиком Л. Заде.

Понятие нечеткого множества можно проиллюстрировать на примере применения прилагательных детский, юношеский, молодой, среднего возраста, пожилой, старый. Разные люди вкладывают в эти понятия разные возрастные рамки. Например, период от 16 до 21 года может считаться либо как юношеский, либо как относящийся к молодому возрасту. Таким образом, каждое из рассмотренных определений представляет собой нечеткое подмножество с размытыми краями. Объекты, попадающие на эти размытые края, относятся к указанным множествам лишь с известной долей достоверности. Так, например, девятнадцатилетний мужчина может быть с достоверностью 50% отнесен к множеству юношей, и с той же достоверностью — к множеству молодых людей.

Аппарат нечетких множеств может применяться для описания процессов мышления, лингвистических явлений и вообще для моделирования человеческого поведения, при котором допускаются частичные истины, а строгий математический формализм не является категорически необходимым.

Множества, которые состоят из конечного числа элементов, называются конечными множествами. К числу конечных множеств относится также и пустое множество, т.е. множество, не содержащее ни одного элемента. Введение понятия пустого множества связано с тем, что, определяя тем или иным способом множество, мы не можем знать заранее, содержит ли оно хотя бы один элемент. Например, множество отличников в какой-либо учебной группе.

Множества, рассматриваемые при решении практических задач, чаще всего имеет дело с конечными множествами объектов. В качестве примеров бесконечных множеств можно привести множества, рассматриваемые в математике: множество всех натуральных чисел (N) и множество всех целых чисел (Z).

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.