Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
реконструкции Я.doc
Скачиваний:
180
Добавлен:
09.06.2015
Размер:
227.33 Кб
Скачать

Очистка сточных вод от ионов тяжелых металлов.

Для практической реализации любого метода необходимо исследовать процесс обработки реальных промывных вод промышленных предприятий.. Необходимо отметить, что в настоящее время не сформулирована четкая концепция обезвреживания жидких отходов гальванических производств (растворы, сточные воды), нет сравнительной технико-экономической оценки современных методов, типовых технологических схем, базового оборудования. Поэтому важной задачей является разработка различных технологических схем обработки промывных вод с учетом конкретного их состава и требований к степени очистки и качеству воды. Для более быстрого и эффективного использования данных технологий необходимо так же разработать новые конструкции аппаратов.

Сточные воды после обезвреживания хроматов, а также кислотно-щелочные стоки должны быть очищены от ионов тяжелых металлов (никеля, цинка, хрома, меди и др.). Традиционно воду от соединений тяжелых металлов очищают путем перевода их в нерастворимые в воде соединения, которые затем удаляют отстаиванием, флотацией, фильтрацией и др. способами разделения твердой и жидкой фаз.

Но основными проблемами, которые возникают сегодня при очистке стоков гальванотехники от соединений хрома, являются : обезвреживание хрома (6) до ПДК (0,005-0,01 мг/л); минимальные расходы реагента и электроэнергии при восстановлении; эффективное удаление дисперсной фазы Cr(ОН)3 до концентрации 0,1-,05 мг/л. Важной задачей является так же сокращение расхода реагента-восстановителя.

Методы очистки сточных вод от тяжелых металлов

 

  1. Реагентный метод

      Наибольшее распространение в практике очистки сточных вод от ионов тяжелых  металлов (ИТМ) получил реагентный метод. Этот метод включает в себя процессы нейтрализации, окислительно-восстановительные реакции, осаждение и обезвоживание образующегося осадка, и позволяет довольно полно удалять из стоков ИТМ.

При этом методе ионы тяжелых металлов переводятся, как правило, в гидроксидные соединения путем повышения рН усредненных стоков до рН их гидратообразования с последующим осаждением, фильтрацией. В необходимых случаях до достижения рН очищенных стоков регламентируемого для сброса.

  

  1. Особенности очистки СВ от катионов меди

  Произведение растворимости гидроокиси меди равно 5,0 х 10-20, в то время, когда растворимость основного карбоната меди практически равна нулю. Поэтому медь выгодно осаждать в виде основного карбоната:

 Для этого в растворе нейтрализующего реагента необходимо иметь одновременно как гидроксильные ионы (ОН)-, так и карбонатные (СО32-). Таким образом, для осаждения из растворов ионов меди нерационально применение только едких щелочей и извести высшего сорта, так же только соды, мела, мрамора, доломита и известняка, дающих в раствор в основном карбонат – ионы.

В связи с изложенным, лучшим реагентом для очистки сточных вод от катионов меди является недожженная известь III-его сорта, содержащая СаСО3.

 

  1. Особенности очистки СВ от катионов цинка

 При осаждении цинка из сульфатных растворов едкой щелочью и известью образуются в основном осадки в виде основных солей цинка: ZnSO4 . nZn(ОН)2, причем число n возрастает с увеличением рН. Так, при рН 7 осаждается основной сульфат цинка, соответствующий формуле ZnSO4 . 3Zn(ОН)2, а повышение рН до 8,8 приводит к образованию осадка, состав которого выражается формулой - ZnSO4 . 5Zn(ОН)2.

При осаждении цинка из сульфатных растворов недожженной известью III-его сорта, содержащей СаСО3 состав основных карбонатов в осадке зависит от условий реакции – температуры, исходной концентрации цинка и известкового раствора, величины рН раствора и т.п. По литературным данным, при рН = 7-9,5 образуется основной карбонат цинка состава 2 ZnСO3 . 3 Zn(ОН)2.

 Основное достоинство реагентного метода – возможность применения его для обезвреживания кислотно-щелочных сточных вод различных объемов с различной концентрацией ионов тяжелых металлов.

 Его недостатки:

-         значительное повышение солесодержания очищенных от ИТМ стоков за счет внесения реагентов, что вызывает необходимость дополнительной доочистки;

-         большой расход реагентов;

-          получение трудно обезвоживаемого и неутилизируемого осадка;

-          большие трудозатраты по эксплуатации;

-          необходимость организации и содержания реагентного хозяйства со специальным коррозионноустойчивым оборудованием и дозирующими устройствами и т.п.

Особо следует отметить, что при реагентных методах очистки и выполнении технологических регламентов остаточные концентрации основных ионов тяжелых и цветных металлов в очищенных стоках достигают следующих минимальных величин, мг/л:

Fe(OH)2   - 0,3-1,0

Zn(OH)2 - 0,05

Cu(OH)2 -0,1-0,15,

и представлены, в основном, в виде их гидроксидов, легко диссоциируемых и растворимых в слабокислых водных растворах.