
- •1.Системы координат
- •2. Векторы и операци над веторами
- •5. Скалярное произведение. Свойства высчисления
- •Скалярное произведение в координатах.
- •Свойства скалярного произведения.
- •Вычисление скалярного произведения, примеры и решения.
- •6.Вексторное произведение. Свойства вычисления.
- •Свойства векторного произведения
- •7.Смешанное произведение.Свойста вычисления. Свойства смешанного произведения
- •8.Линейные образы на плоскости.
- •9. Кривые 2 порядка
- •10.Линейные образы в пространстве.
- •11. Поверхности второго порядка.
- •12.Матрицы, правило крамера.
- •Разложение по строке или столбцу
- •Правило Саррюса
- •Свойства определителей
- •Решение систем уравнений
- •Нахождение обратной матрицы
- •13. Теорема Крамера Капелли, метод гаусса
- •Решение систем линейных уравнений методом Крамера.
- •14.Фундаментальный набор решений однородной системы уравнений.
- •15.Функции. Последовательность как функция дискретного аргумента.
- •16. Бескоечно большие, бесконечно малые и ограниченные велечины и их свойства.
- •Предел функции
- •4.4. Правила предельного перехода
- •4.5. Бесконечно малые и бесконечно большие величины
- •4.6. Свойства бесконечно малых и бесконечно больших величин и связь между ними
- •Связь бесконечно малой и бесконечно большой величины
- •17.Арифметическое свойство придела.
- •18. Первый замечательный предел.
- •19.Второй замечательный предел.
- •20. Сравнение бесконечно малых величин. Бесконечно малые функции. Сравнение бесконечно малых
- •Сравнение бесконечно малых функций
- •21.Неперывность ффункции, классификация точекк разрыва.
- •22.Производная и ее свойства.
- •Правила дифференцирования
- •Основные формулы дифференцирования.
- •23. Производная сложной и обратной функции.
- •24.Геометрический смысл производной.
- •25. Дефференциал.
- •Геометрический смысл дифференциала
- •26. Теорема лагранжа о конечном приращении.
- •27. Теорема ролля Теорема Ролля
- •28. Теорема ферма Теорема Ферма
- •29.Теорема коши
- •30. Монотонность и экстремумы функции. Применение производной. Монотонность функции, основные понятия и определения
- •Связь монотонности функции с ее производной
- •31. Асимптоты. Точки перегиба. Построение графиков функций
- •32. Логарифмическое дифференцирование.
- •Случай независимой переменной
- •Случай зависимой переменной
- •34. Формула тейлора
- •Формула Тейлора
- •35. Функции нескольких переменных. Непрерывность. Дифференцируемость.
- •36. Повторное дифференцирование.
- •37. Геометрический смысл частных производных.
- •38. Дифференциал функции нескольких переменных.
- •39. Производная по направлению. Градиент.
- •40. Дифференцирование сложной функции нескольких переменных.
- •41. Экстремумы функции нескольких переменных.
- •42. Условные экстремумы. Метод множителей Лагранжа
1.Системы координат
В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В пространстве по системе Декартаположение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.
Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат. Очень легко и прямо обобщается для пространств любой размерности, что также способствует ее широкому применению.
Прямоугольная
система координат на плоскости образуется
двумя взаимно перпендикулярными осями
координат и
(крестом).
Оси координат пересекаются в точке
,
которая называется началом
координат,
на каждой оси выбрано положительное
направление.
Рис. 1
Положение
точки на
плоскости определяется двумя
координатами
и
.
Координата
равна
длине отрезка
,
координата
—
длине отрезка
в
выбранных единицах измерения.
Отрезки
и
определяются
линиями, проведёнными из точки
параллельно
осям
и
соответственно.
При
этом координате приписывается
знак минус, если точка
лежит
на луче
(а
не на луче
,
как на рисунке). Координате
приписывается
знак минус, если точка
лежит
на луче
.
Таким образом,
и
являются
отрицательными направлениями осей
координат (каждая ось координат
рассматривается как числовая
ось).
Координата называется абсциссой точки
,
координата
— ординатой точки
.
Символически это записывают так:
или
или указывают принадлежность координат конкретной точке с помощью индекса:
и т. д.
В правосторонней системе координат положительное направление осей выбирают так, чтобы при направлении оси
вверх, ось
смотрела направо. Обычно принято пользоваться правосторонними системами координат (если обратное не оговорено или не очевидно — например, из чертежа; иногда по каким-то соображениям бывает удобнее всё же пользоваться левосторонней системой координат).
Прямоугольная система координат в пространстве (в этом параграфе имеется в виду трёхмерное пространство, о более многомерных пространствах — см. ниже) образуется тремя взаимно перпендикулярными осями координат
,
и
. Оси координат пересекаются в точке
, которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно (не обязательно[2]) одинаковы для всех осей.
— ось абсцисс,
— ось ординат,
— ось аппликат.
Рис. 2
Положение точки
в пространстве определяется тремя координатами
,
и
. Координата
равна длине отрезка
, координата
— длине отрезка
, координата
— длине отрезка
в выбранных единицах измерения. Отрезки
,
и
определяются плоскостями, проведёнными из точки
параллельно плоскостям
,
и
соответственно.
Координата
называется абсциссой точки
,
координата
— ординатой точки
,
координата
— аппликатой точки
.
Символически это записывают так:
или
или привязывают запись координат к конкретной точке с помощью индекса:
и т. п.
Каждая ось рассматривается как числовая прямая, т. е. имеет положительное направление, а точкам, лежащим на отрицательном луче приписываются отрицательные значения координаты (расстояние берется со знаком минус). То есть, если бы, например, точка
лежала не как на рисунке — на луче
, а на его продолжении в обратную сторону от точки
(на отрицательной части оси
), то абсцисса
точки
была бы отрицательной (минус расстоянию
). Аналогично и для двух других осей.
Все прямоугольные системы координат в трехмерном пространстве делятся на два класса — правые (также используются терминыположительные, стандартные) и левые. Обычно по умолчанию стараются использовать правые координатные системы, а при их графическом изображении еще и располагают их, если можно, в одном из нескольких обычных (традиционных) положений. (На рис. 2 изображена правая координатная система). Правую и левую системы координат невозможно поворотами[3] совместить так, чтобы совпали соответствующие оси (и их направления). Определить, к какому классу относится какая-либо конкретно взятая система координат, можно, используя правило правой руки, правило винта и т. п. (положительное направление осей выбирают так, чтобы при повороте оси
против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси
, если этот поворот наблюдать со стороны положительного направления оси
).