Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсова.docx
Скачиваний:
13
Добавлен:
08.06.2015
Размер:
122.4 Кб
Скачать

4. Теорія програмованого навчання.

Автори: Б. Скинер, Е. Торндайк, Н. Крауденр, В. Беcпалько.

Провідні ідеї:

1.Дана теорія побудована на кібернетичних принципах функціонування систем за такими каналами:

-     канал прямого зв'язку - інформація (порція) одна для всіх, однакова.

-     канал зворотного зв'язку - інформація надходить у недостатньому об'ємі й із запізненням.

2. Вчитель - суб'єкт керування; учень - об'єкт керування.

3. Інформація надходить дозами у вигляді певних програм. Розрізняють типи програм:

а) лінійна - являє собою послідовні блоки інформації з контрольним завданням. Учень повинен дати правильну відповідь. Якщо відповідь неправильна, йому пропонують повернутися й все перевірити;

б) розгалужена - учневі, на випадок неправильної відповіді надають додаткову інформацію, що дозволить йому виконати контрольне завдання;

в) адаптована - дає учневі можливість самостійно обирати рівень складності навчального матеріалу;

г) комбінована - містить у собі фрагменти лінійних, розгалужених й адаптованої програм.

5. Теорія проблемного навчання.

Автори: П. Москаленко, Г. Махмутов, И. Лернер.

Провідні ідеї:

Основними поняттями категорії «проблемного навчання» варто вважати проблему, проблемну ситуацію, проблемне завдання.

-     Проблемна (грецьке - завдання) - теоретичне або практичне питання, що має потребу в розв’язуванні, дослідженні.

-     Проблемна ситуація (фр. - сукупність обставин) - проблема, що має потребу у творчому пошуку.

Основні способи створення проблемних ситуацій:

1.Зіткнення учнів із протиріччям між новими фактами, явищами й старими знаннями при необхідності їхнього теоретичного пояснення й пошуків шляхів їхнього застосування.

2.Зіткнення учнів з необхідністю вибору потрібної їм інформації.

3.Використання протиріч між наявними в учнів знаннями й практичними завданнями.

4.Спонукання до порівняння, зіставлення й протиставлення фактів, явищ, правил і дій їхнього узагальнення.

5.Пред'явлення учням ситуацій практичного характеру.

6.Спонукання учнів до виявлення внутрішньо й між предметних зв'язків і зв'язків між явищами.

М. Махмутов наводить таку класифікацію навчальних проблем:

1.Галузь і місце виникнення.

2.Роль у процесі навчання.

3.Суспільна й педагогічна значимість.

4.Спосіб організації процесу розв’язування.

6. Теорія оптимізації навчально-виховного процесу.

Автори: Ю. Чабанський

Провідні ідеї:

1.Оптимальний - означає найкращий для наявних сьогодні умов, для реальних можливостей учнів і вчителі в цей момент, з погляду певних критеріїв.

2.До важливих критеріїв в оптимумі належать:

-     Досягнення кожним учнем реально можливого для нього в цей момент часу (період) рівня успішності, вихованості й розвитку, але не нижче задовільного із прийнятними нормами оцінок;

-     Дотримання учнями й вчителями встановлених норм часу на визначену й домашню роботу;

-     Мінімально необхідні зусилля, витрачені учасниками навчально-виховного процесу.

3.Оптимізація навчання передбачає єдність діяльності вчителі й учнів на уроці.

4.Основні способи оптимізації:

-      I спосіб оптимізації - комплексне планування й конкретизація завдань утворення, виховання й розвитку школярів.

-     ІІ спосіб оптимізації - відповідності змісту утворення мети навчання, з визначенням у змісті уроку головного, істотного.

-     ІІІ спосіб оптимізації - відбір найбільш удалої структури уроку.

-     IV спосіб оптимізації - відбір найбільш раціональних методів і засобів навчання.

-     V спосіб оптимізації - диференційований й індивідуальний підхід до учнів, що передбачає оптимальне з'єднання загалом класних, групових й індивідуальних форм навчання.

-     VI спосіб оптимізації - створення належних умов навчання (матеріальних, психологічних, естетичних, гігієнічних).

-     VII спосіб оптимізації - відбір оптимального темпу навчання.

-     VIII спосіб оптимізації - визначення відповідності підсумкових результатів, отриманих у процесі навчання, реальним можливостям школярів за нормативами витрат часу вчителем й учнями [36, с. 9-12].

1.5. Інформаційні технології в навчально-виховній діяльності освітнього закладу

Для організації й застосування інформаційних технологій у навчанні необхідна наявність у навчальному закладі програмного забезпечення навчального призначення. На сьогоднішній день існує досить велика кількість поки ще російськомовного програмного продукту, що може бути використаний учителем у навчальній діяльності. Це такі засоби, наприклад, як:

1.Універсальне ППЗ, яке можна використати на уроці з будь-якого предмета:

-       Програма генерації й проведення тестів;

-       Програма розробки презентацій Microsoft Power Point (може бути використана для узагальнюючих уроків, уроків підготовки до тематичної атестації тощо);

2. Повний шкільний курс із хімії, геометрії, географії, літератури, математики фізики (російськомовна програма, дані якої можна використати в підготовці до звичайних уроків) [3].

Метод проектів.

Останнім часом усе більше уваги приділяється питанням особистісно орієнтованого освітнього процесу, тобто такого процесу в освіті, що зорієнтований на особистість. Особистість людини створюється суспільними зв'язуваннями, у які вона вступає у своїй предметній діяльності. Але основною діяльністю діти займаються в стінах школи. Тому саме школа повинна різноманітити цю діяльність, зробити її більше жвавою і конкретною, щоб надати можливість для різнобічного розвитку особистості дитини.

Спостереження за обдарованими дітьми допомогли психологам зробити висновок про вікові передумови здатностей, вікових факторах обдарованості (тобто, обумовлені віком підвищені можливості розвитку психіки в тих або інших напрямках). Саме в роки дитинства внутрішні умови вікового розвитку є одночасно й факторами формування здатностей. Значення творчого аспекту діяльності росте з роками. Діти ж схильні до «діяльності взагалі», саме в дитячі роки найбільше виявляється особлива широта й мінливість захоплень, готовність утягуватися в усі нові види знань. І справа не в тім, що в активній діяльності виявляються здатності. А в тім, що вони в цій діяльності створюються. Здатності завжди є результатом розвитку.

За результатами досліджень різних міжнародних організацій і фондів, учні пострадянських держав відрізняються від своїх закордонних однолітків більшим обсягом знань й у той же час неспроможністю застосовувати їх у реальному житті. Використання в навчальному процесі методу проектів дає можливість перебороти цей бар'єр, навчити дітей самостійно добувати нові знання й застосовувати їх на практиці.

Проект – сукупність певних дій, документів, тестів для створення реального об'єкта, предмета, створення різного роду теоретичного продукту.

В основі методу проектів лежить розвиток пізнавальних навичок учнів, уміння самостійно конструювати свої знання, розвиток критичного мислення.

Метод проектів завжди орієнтований на самостійну діяльність учнів – індивідуальну, парну, групову, яку учні виконують протягом певного відрізка часу. Метод проектів завжди допускає розв'язання деякої проблеми, що передбачає, з одного боку, використання різноманітних методів, засобів навчання, а з іншого – інтеграція знань, умінь із різних галузей науки, техніки, технології, творчих галузей. Результати виконаних проектів повинні бути «відчутними», тобто якщо це теоретична проблема, то конкретне її розв’язування, якщо практична, - конкретний результат, готовий до впровадження[9].

Телекомунікаційний проект

Телекомунікації – передача інформації на відстань електронними засобами. Комп'ютерні телекомунікації - передача інформації з одного комп'ютера на іншій у будь-якій точці земної кулі. Комп'ютерні телекомунікації дозволяють учням і вчителям з різних країн миру спілкуватися один з одним. В 80-ті роки телекомунікації використалися лише як зручний й оперативний вид зв'язку, оскільки вся мережна робота полягала в обміні аркушами між учнями. Однак, як свідчить міжнародна практика й численні експерименти, на відміну від простої переписки, спеціально організована цілеспрямована спільна робота учнів у мережі може дати більше високий педагогічний результат.

Найбільш ефективної виявилася організація загальних проектів на основі співробітництва учнів різних шкіл, міст і країн. Основною формою організації навчальної діяльності учнів у мережі став навчальний телекомунікаційний проект.

Навчальний телекомунікаційний проект – це спільна учбово-пізнавальна або ігрова діяльність учнів-партнерів, організована на основі комп'ютерної телекомунікації, що має загальну позначку- дослідження певної проблеми, погоджені методи, способи діяльності й спрямована на досягнення загального результату діяльності.

Специфіка телекомунікаційних проектів полягає насамперед у тім, що вони по своїй суті завжди міжпредметні. Розв’язування проблеми, закладеної в будь-якому проекті, завжди вимагає залучення інтегрованого знання. Але в телекомунікаційному проекті, особливо міжнародному, потрібна, як правило, більш глибока інтеграція знаннь, що передбачає не тільки знання властивості предмета досліджуваної проблеми, але й знання особливостей національної культури.

Тематика й зміст телекомунікаційних проектів повинні бути такими, щоб їхнє виконання цілком природно вимагало залучення властивостей комп'ютерних телекомунікацій. Інакше кажучи, не всякі проекти, якими б цікавими й практично значимими вони не здавалися, можуть відповідати характеру телекомунікаційних проектів. [35].

Методичні рекомендації щодо організації проектної діяльності учнів і вчителів

Метод проектів - це приклад інформаційно - педагогічних технологій навчання технологій, а засобу їхні проведення можуть бути різними. Це можуть бути комп'ютери, телекомунікації, інтерактивне телебачення, факс, радіозв'язок тощо. Тому головне - чітко визначитися із самим методом.

Перш ніж приступитися до певного проекту, якщо вже є ідея проекту, необхідно визначитися з його соціальною, культурною, економічною значимістю. Можливо, намічена ідея може бути коректно усвідомлена тільки тоді, коли буде розглянута в певній системі знань, соціального явища, економічної проблеми тощо. Інакше кажучи, обрана ідея може «потягнути» за собою цілую серію взаємопов'язаних проектів, що становлять єдину тему, проблему, що доцільно розглядати, аналізувати, вивчати послідовно, крок за кроком, проект по проекті, усе більш глибоко вникаючи в проблему розглядаючи різні її аспекти. Мова тоді вже йде про цілу програму, що складається із серії проектів, які можуть охоплювати різні галузі знання, різні роки навчання. Це не повинне зупиняти вчителя. Він може намітити цілу програму дослідницьких проектів не на один рік, вводячи її з роками до структури відповідно до програмному матеріалу. Тому вчитель, насамперед, повинен розглянути свою ідею із цього погляду:

-       Виявлення й формулювання загальної проблеми;

-       Виявлення окремої проблеми для певного дослідницького завдання з урахуванням вікових особливостей і розвитку дітей;

-       Презентація ситуацій для виявлення проблеми;

-       Формулювання проблеми;

-       Формулювання гіпотез;

-       Методи збору й обробки даних на підтвердження висунутих гіпотез;

-       Збір даних;

-       Обговорення отриманих даних;

-       Перевірка гіпотез;

-       Формулювання понять, узагальнень, висновків;

-       Впровадження висновків.

На сьогодні існують кілька національних, регіональних і міжнародних програм, які впроваджують використання нових інформаційних технологій для створення різноманітних проектів, у яких беруть участь учні й вчителя середніх шкіл. Це такі програми як EuroSchoolNet, Orilla Orilla, GLOBE.

Висновок до розділу I

Запропоновані описи різних методик інтерактивного навчання будуть сприяти розвитку творчого мислення старшокласників, вихованню позитивного відношення до процесу розвитку учнів і дадуть можливість учням одержати досвід, що допоможе більш ефективно використати придбані знання на практиці.

Інноваційні методики передбачають спільну групову роботу, дебати, моделювання, рольові ігри, дискусії, індивідуальні й групові проекти тощо. Вони не тільки підвищують зацікавленість учнів предметом, але й забезпечують більше глибоке засвоєння змісту, вироблення цивільних навичок і відданість демократичним цінностям.

Розділ 2. Використання персонального комп'ютера при побудові графіків функцій в 8 класах

2.1. Вивчення функцій й їхніх графіків у загальноосвітній школі

Поняття функції є одним з найважливіших математичних понять. Деякі види функцій розглядалися ще в далекій давнині (астрономічні таблиці вавилонян, стародавніх греків тощо). Однак загального поняття функції ще не було.

Поняття функції виникло вXIV ст. але в той час воно не набрало ще досить чіткої форми. Введення в 1637 році Р. Декартом поняття змінної величини істотно вплинуло на формування й розвиток поняття функції.

Визначення «функція» уперше було введено Г. Лейбніцем, а чисто арифметичне визначення поняття числової функції вперше сформулював Бернуллі, поки Лобачевский в 1834 році не сформував більш загальне визначення функції: число, що задається для кожного й разом зпоступово змінюється. Три роки потому П. Діріхле прийшов до висновку, що спосіб становлення співвідношення між значеннями йне важливий, і дав визначення функції:є функція від, якщо будь якому значеннювідповідає значення, причому зовсім не істотно, яким саме способом установлена зазначена відповідність.

У загальноосвітній школі поняття функції вперше вводиться у восьмому класі.

Якщо кожному значенню змінної х з деякої множини М відповідає одне значення змінноїу, то змінну у називають функцією від х.

У підручнику приводяться приклади функціональних залежностей і не функціональних. Даються способи завдання функцій:

-     Таблицею;

-     Аналітично;

-     Графіком.

Основними завданнями вивчення числових функцій є формування в учнів:

1.Навичок дослідження функцій;

2.Навичок побудови їхніх графіків;

3.Навичок знаходження функції, зворотної до даної функції;

4.Навичок застосування функцій для опису й вивчення реальних процесів.

Відповідно до цих завдань у результаті вивчення функцій учні повинні навчитися:

1.Знаходити область визначення й область значень, проміжки знакозмінних величин, нулі функції, досліджувати функцію на монотонність;

2.Будувати графіки функцій, визначати вивчені функції за їхніми графіками, уміти досліджувати функцію за її графіком;

3.Знаходити функцію, зворотну до даноі, і будувати її графік за графіком даної функції;

4.Застосовувати виучені функції для розв’язування конкретних задач.

Вивчення лінійної функції починається з вивчення окремого виду - прямої пропорційності. Такий підхід є, по-перше, найбільш доступним, а по-друге, дає можливість у процесі вивчення лінійної функції вивчити властивості прямої пропорційності.

У результаті розв’язування деякої задачі вираження виду у=kх, варто помітити, що це вираження із двома змінними задає відношення між змінною величиною х і змінною величиною y. Оскільки для кожного значення х0 змінної х існує єдине значення у0змінної, котре перебуває у відношенні у=kх,те відношення у=kx є функцією.

Тот факт, що графіком функції є пряма обґрунтовується на основі наочних подань учнів за допомогою індуктивних міркувань. Розглянувши побудову декількох точок для графіка функцій виду у=kx при різних значеннях k, у кожному випадку зауважуємо, що точки графіка належать одній прямій. Звідси й робимо висновок. Для того, щоб висновок був правильним, важливе значення має точність побудов.

Розглядаючи графік, установлюємо властивості функції.

Під час вивчення лінійної функції загального виду важливо вимагати, щоб учні зрозуміли, що графік функції y=kx+b можна дістати паралельним перенесенням графіка функції у=kx у напрямку осі OY.

До числа нелінійних алгебраїчних функцій, які вивчаються в неповній середній школі належать: обернена пропорційність, степенева функція з натуральним показником і функції у=ах+ вх + с.

У процесі вивчення оберненої пропорційності можна формувати поняття непарної функції і її графіка.

Вивчаючи функції у = ах2 й у = ах3, важливо розглянути питання про існування зворотних до них функцій.

Дослідження функцій у = хn і побудову їх графіків доцільно виконувати, розділивши їх на два класи за ознакою парності або непарності n.

Оскільки послідовність є функцією, заданої на множині всіх або перших n натуральних чисел, то поняття послідовності можна формувати під час вивчення поняття функції. Для цього досить включити в число перших прикладів відповідностей і функцій такі, областю визначення,яких є множина перших n натуральних чисел, а кожну з функцій, заданих формулами, розглядати спочатку на множині натуральних, цілих й, нарешті, на множині раціональних чисел.

Такий підхід до вивчення функції дасть можливість не тільки на більше ранньому етапі сформувати поняття послідовності, але й розширить можливості щеплення навичок дослідження функцій.

Ціль вивчення функцій в 8 класі.

Ввести поняття функції, області визначення й області значень функції, способи завдання функції; розглянути функції, відзначені в програмі, їх графіки й властивості.

Учні повинні:

Мати поняття про функцію, аргумент і значення функції, область визначення, область значень, нулі функції, графіки функції;

Знати:

-     Означення функції:

-     Три основних способи завдання функції;

-     Означення лінійної функції, прямої і зворотної пропорційності;

-     Основні властивості відзначених функцій і функцій у=х, у =, [у=х].

Уміти:

-     Знаходити область визначення й область значень функції;

-     Знаходити значення функції, заданої графіком, таблицею або формулою;

-     Будувати графіки відзначених функцій.

Ціль вивчення функцій в 9 класі

Ввести визначення квадратичної функції.

Учні повинні

Знати:

-     Формулу для обчислення абсциси вершини параболи;

-     Алгоритм побудови графіка квадратичної функції;

Уміти:

-     Будувати графік квадратичної функції;

-     Знаходити за графіком квадратичної функції нулі функції, проміжки зростання й убування функції.

Пояснення починаються, як правило, з розгляду залежностей між залежностей двох змінних, у яких кожному значенню незалежної змінної відповідає єдине значення залежної змінної.

Під час формування загального поняття функцій важливо використати приклади залежностей, які задаються різними способами (за допомогою графіків і таблиць), відомі учням ще з попередніх класів.

Оскільки функція вважається заданою, коли визначений спосіб залежності між змінними й областю визначення функції, тоді природньо розглядаючи приклади, ввести поняття області визначення й області значення функцій.

2.2. Використання ПК на уроках математики при побудові графіків функцій

Впровадження в навчальний процес сучасних засобів збору, збереження, передача інформації відкриває широкі перспективи гуманітаризації освіти й гуманізації навчального процесу, поглиблення й розширення теоретичної бази знань і надання результам навчання практичної значимості, активізації пізнавальної діяльності, створення умов для повного розкриття творчого потенціалу дітей з обліком їхніх вікових особливостей і життєвого досвіду, індивідуальних нахилів, запитів і здібностей.

Разом з тим виникає цілий ряд проблем, що стосуються змісту, методів, організаційних форм і засобів навчання, обов'язкових рівнів знань із різних навчальних предметів, яких повинна досягти кожна дитина.

При цьому вчителеві не нав'язується ніяка методика подання навчального матеріалу, закріплення й контролю знань, конкретний зміст, методи, засоби й організаційні форми навчання, співвідношення між самостійною роботою учнів і роботою разом із вчителем, між індивідуальними й колективними формами роботи й ін. Все це вчитель повинен визначити сам з обліком своїх власних позицій і смаків, специфіки умов, у яких перебігає навчальний процес, індивідуальних особливостей окремих учнів і класного колективу.

Ясно, що неможливо й немає необхідності всіх дітей однаково вчити й навчити, сформувати в кожної дитини ті самі знання, уміння й навички в різних предметних галузях, обов'язково домагатися від дітей досягнення однакового рівня розвитку логічного й творчого мислення, загального сприйняття різних проявів навколишньої дійсності. Це стосується й навчання математики, методів розв'язання задач, побудови й аналізу математичних моделей різноманітних процесів й явищ, інтерпретації й узагальнення результатів такого аналізу [15].

Сьогодні розроблена вже значна кількість програмних засобів, що дозволяють вирішувати за допомогою комп'ютера досить широке коло математичних задач різних рівнів складності. Це такі програмні засоби, як, GRAN 1, Maple, Mathematika, MathLab,і ін. Причому одні з них орієнтовані на фахівців досить високої кваліфікації в галузі математики, інші -на учнів середніх навчальних закладів або студентів вузів, що лише почали вивчати шкільний курс математики або основи вищої математики.

Найбільш зручними для підтримки вивчення курсу математики в середніх навчальних закладах видаються комплект програм GRAN (GRAN1, Gran-2D, Gran-3, ін.). Від користувача не потрібен значний об'єм спеціальних знань із інформатики, основ обчислювальної техніки, програмування тощо, за винятком найпростіших понять, повністю доступних для учнів середніх класів.

Використання подібних програм дає можливість учневі вирішувати окремі задачі, не знаючи відповідного аналітичного апарата, методів і формул, правил перетворення виразів, тощо. Наприклад, учень може вирішувати рівняння й нерівності і їхні системи, не знаючи формул для відшукування коренів, методу виключення змінних, досліджувати функції, не знаючи алгоритмів їхнього дослідження, не використовуючи симплекс-метод, градиентные методи й т.д. Разом з тим завдяки можливостям графічного супроводу комп'ютерного розв'язання задачі, учень чітко й буде легко вирішувати досить складні задачі, упевнено володіти відповідною системою понять і правил. Використання програмних засобів відзначеного типу дає можливість у багатьох випадках зробити розв'язання задачі настільки ж доступним, як простий розгляд малюнків або графічних зображень. Відповідні програмні засоби перетворюють окремі розділи й методи математики в "математику для всіх", що стають доступними, зрозумілого, легкого й зручними для використання, а той, хто вирішує задачу, стає користувачем математичних методів, можливо не володіючи їхньою побудовою, аналогічно до того, як він використає інші комп'ютерні програми (текстові, графічні, музичні редактори, електронні таблиці, бази даних), не знаючи, як і за якими принципами їх побудована, якими мовами програмування описані, які теоретичні положення покладені в їхню основу.

З іншої сторони такий підхід до вивчення математики дає наочні подання про поняття, які вивчаються, розвиває образне мислення, просторову уяву, дозволяє досить глибоко проникнути в сутність досліджуваного явища, неформально вирішувати задачу. При цьому на передній план виступає з'ясування проблеми, постановка задачі, розробка відповідної математичної моделі, матеріальна інтерпретація отриманих за допомогою комп'ютера результатів. Всі технічні операції щодо розробки побудованої математичної моделі, реалізації методу відшукування розв’язування, оформлення й подання результатів розробки вхідних даних покладають на комп'ютер.

Важко переоцінити програмні засоби відзначеного типу й при поглибленому вивчанні математики. Можливість провести необхідний чисельний експеримент, швидко виконати потрібні обчислення або графічні побудови, перевірити ту або іншу гіпотезу, випробувати той або інший метод розв'язання задачі, уміти проаналізувати й пояснити результати, отримані за допомогою комп'ютера, з'ясувати границі можливостей використання комп'ютера або обраного методу розв'язання задачі мають надзвичайне значення при вивченні методів математики.

Вже з наведеного видно, як може змінюватися (причому в досить широкому діапазоні) зміст і структура навчальної діяльності учнів при вивченні математики залежно від специфіки обраної ними предметної галузі, спрямованості навчання, індивідуальних нахилів і здатностей. При цьому комп'ютерна підтримка вивчення математики з використанням програмних засобів відзначеного типу дає значний педагогічний ефект, полегшуючи, розширюючи й поглиблюючи вивчення й розуміння методів математики на відповідних рівнях у середніх навчальних закладах з найрізноманітнішими нахилами в навчанні - гуманітарного напрямку, різних профілів, середніх загальноосвітніх школах, гімназіях, ліцеях, класах і закладах з поглибленим вивчанням природно-математичних дисциплін. Природно, і програми курсів математики, і глибина вивчення відповідних понять, законів, методів, аналітичного апарата можуть істотно відрізнятися між собою.

Не розглядаючи детально всі теми, досліджуванні у курсі математики середньої загальноосвітньої школи, можна помітити, що комп'ютерні програми згаданого типу можуть бути використані практично на всіх уроках математики, починаючи вже з п'ятих - шостих класів, зокрема при вивченні системи координат на прямій і на площині, планіметрії, поняття функції, елементарних функцій й їх властивостей.

 Зрозуміло, що крім програм відзначеного типу вчитель при необхідності може використати різного роду тренажери, програми для контролю знань, збір статистичних даних щодо навчального процесу і їхнього пророблення тощо. Використання таких програм дає можливість учителеві значно інтенсифікувати спілкування з учнями й учнів між собою, більше уваги приділити задачам на доказ, на постановку задач, побудова їхніх математичних моделей, розробку й дослідження методів розв'язання задач, дослідження рішень, логічний аналіз умов задач, пошук нестандартних підходів до розв'язання задач, виявленню закономірностей, яким підкоряються досліджувані процеси і явища, перевести на комп'ютер рутинні, чисто технічні й нецікаві операції, ручне виконання яких практично не розвиває інтелект дитини, а часто навіть, навпроти, гасить його, коли дитина вподібнюється роботу або комп'ютеру, виконуючи замість нього обчислювальні, графічні й інші технічні операції.

Зрозуміло, що заняття з математики, орієнтовані на використання засобів навчання згаданих типів, повинні проводитися відповідним чином оснащеному технічними й програмними засобами класі. У таких класах повинні вивчатися всі навчальні предмети, а не тільки основи інформатики й обчислювальної техніки. Це у свою чергу буде сприяти розширенню й поглибленню межпредметных зв'язків, інтеграції окремих навчальних предметів, їхньому взаємопроникненню й взаємодії, що в остаточному підсумку дасть можливість в окремих навчальних закладах або класах опановувати елементами нових інформаційних технологій й інформаційної культури при вивченні різних навчальних дисциплін, а не лише окремого, майже ізольованого від інших, навчального курсу "Основи інформатики й обчислювальної техніки"[17].

У посібнику «Математика з комп'ютером» [16] досить детально розглядається програмний засіб GRAN1 в об'ємі, що відповідає програмі курсу математики середньої загальноосвітньої школи. Названий засіб призначений у першу чергу для розв'язання певних класів задач різними методами й може бути віднесений до так називаних програм - розв’язуванням.

У посібнику описуються правила роботи із програмою GRAM для Windows (надалі - GRAN1), розробленої спеціально для підтримки шкільного курсу математики. Аналізуються можливості використання програми при вивченні різних розділів математики в середній загальноосвітній школі, СПТУ, педагогічних училищах, середніх навчальних закладах гуманітарного напрямку.

Програма GRAN1 призначена для графічного аналізу функцій, звідки й походить її назва (Graphic Analysis).

Для побудови графіків залежностей між змінними (різних типів завдання) і виконання деяких інших операцій над графічними побудовами призначений пункт "Графіки".

Підпункт "Побудувати" використається при необхідності побудувати графіки однієї або декількох уведених залежностей. Якщо графік деякої введеної залежності будувати не потрібно, тоді за допомогою маніпулятора "мишка" або клавіші "попуск" на клавіатурі варто зняти мітку й проти позначення залежності у вікні "Список об'єктів". Графіки залежностей, проти позначення яких стоїть знак 0, будуть накреслені при звертанні до послуги "Побудувати".

Вираження залежностей подаються у вікні "Список об'єктів" символами тих же кольорів, що й відповідні їм графіки, зображувані у вікні "Графіки". Кількість об'єктів не обмежується (обмежується лише апаратними ресурсами комп'ютера).

Для завдання явної залежності між змінними й у декартовой системі координат, необхідно спочатку встановити тип завдання залежності "Явна: Y=Y(X)" у вікні "Список об'єктів".

Потім варто звернутися до послуги "Об'єкт/Створити" або нажати кнопку "f+" на панелі інструментів.

У результаті з'являється допоміжне вікно "Вступ вираження залежності". У рядок "Y(X)=" потрібно ввести вираження, що задає залежність.

Цей рядок являє собою список, що розкривається, і при створенні нової залежності відповідне вираження заноситься в цей список. Тому при створенні наступної залежності можна вводити вираження з використанням даних із цього списку.

Якщо вираження записане неправильно, то буде виведене повідомлення про помилку.

Введення даних можна здійснити як із клавіатури, так і за допомогою "мишки", використовуючи панель «Введення даних», що подано в допоміжному вікні .

Після введення виразу можна вказати кольори, яким у вікні «Графіки" буде будуватися графік залежності, для чого необхідно встановити перемикач "FG" у відповідне положення (вказавши потрібні кольори курсором "мишки").

У допоміжному вікні також указується кількість точок побудови графіка (від 10 до 1000, за умовчуванням 100). Потрібно відзначити, що зі збільшенням кількості точок побудови швидкість обчислень і побудов графіків зменшується. Разом з тим зі зменшенням кількості точок побудови зменшується точність графічних побудов.

Іноді зручно не будувати весь графік, а прорисовувати лише вузлові точки. У цьому випадку потрібно встановити мітку поруч із написом не «з'єднувати точки відрізками».

На рисунку 1 представлений безперервний графік залежності y = x- 3 (з 100 точок на графіку з'єднані відрізками прямих, а на мал. 4 – набір точок графіка тієї ж залежності, не з'єднаних відрізками прямих, а на рис. 5 графік тієї ж залежності, але кількість точок побудови дорівнює 10.

Кнопка «ОК» служить для створення нового об'єкта у вікні «Список об'єктів», а кнопка «Скасувати» скасовує всі дії щодо створення об'єкта (рис.2).

Приклади:

1.       Нехай необхідно побудувати графік функції y = x2-3. Встановимо у вікні «Список об'єктів» тип залежності «Явна У = У(Х):». Потім звернемося до послуги «Об'єкт/Створити». У результаті з'явиться допоміжне вікно «Введеня виразу залежності».

Введемо вираз х^2 – 3 у рядку «У(Х) =». У рядку «А=» введемо значення лівої границі відрізка заданої функції, наприклад -7, а в рядку «В=» введемо значення правої границі відрізка, наприклад, 5. Кольори й кількість точок побудови графіка залишимо заданим за умовчуванням і натиснемо кнопку «ОК». У результаті у вікні «Список об'єктів» одержимо: новий об'єкт У(Х) =х^2 – 3 (рис. 7)

У нижній частині цього вікна подані деякі характеристики залежності: А=-7, В=5, Min Y = -3, Max Y = 46.

Звернемося тепер до послуги головного меню «Графік/Побудувати». У результаті у вікні «Графіки» з'явиться графік залежності y = х-3, побудований на відрізку [-7,5] (рис. 7).

Іноді буває необхідним збільшити зображення в деякій частині вікна "Графіки" до розмірів усього вікна. Для цього варто вказати прямокутник, у якому розміщена частина зображення, що збільшується. Ця операція здійснюється за допомогою маніпулятора "мишка". Курсор "мишки" потрібно встановити в одну з вершин необхідного прямокутника, потім нажати ліву кнопку "мишки" й, не відпускаючи її, вказівку "мишки" перевести в крапку, що є протилежною вершиною прямокутника.

Як тільки кнопка "мишки" буде відпущена автоматично відбудеться зміна масштабу уздовж осей Ох й Оу. У вікні "Графіки" будується збільшена до розмірів усього вікна частина зображення, що була розташована усередині прямокутника. Ця послуга використається при необхідності уточнити вид графіка в деякій його частині, координати характерних його точок.

Збільшення масштабу, у якому будуються графіки фактично приводить до збільшення точності обчислень у біля досліджуваної точки.

Щоб після операції збільшення повернутися до попереднього зображення, варто звернутися до послуги «Графік/Масштаб/Попередній масштаб» або скористатися кнопкою «М<» панелі інструментів.

При необхідності вилучити з вікна «Графіки» побудовані там зображення використається послуга «Графік/Очистити».

2.3 Педагогічний експеримент і його результати

Експериментальна перевірка запропонованого в роботі виконувала в селі Шевченко, Тельманівського району Донецкої області в 8- х класах. Був проведений експеримент, що констатує, під час якого вивчалися знання, уміння й навички учнів, придбані ними в процесі вивчення теми “Функція” у шкільному курсі математики. В 8-А й 8-Б-вклассе вчиться 21 учень.

Їм були запропоновані контрольні робота з теми «Функція»:

1. Побудувати графік функції y ==якщо 0<х<10.

2. Побудувати графік функції y = 3 – 0,5х.

3. Чи проходить графік функції y = х через точку А (5;25), через точку В (-5;25), через точку С (5;-25)?

При складанні контрольної роботи були використані задачі на побудову графіка функцій. Для виконання контрольної роботи школярам пропонувалася одна академічна година (45 хвилин).

Результати проведеного дослідження представлені в таблиці 1

Таблиця 1.

Результати виконання контрольної роботи.

Номер завдання

8-а клас

8-в клас

1

Упоралися

85 %

70 %

Допустили помилки

12 %

15 %

Не впоралися

3 %

15 %

2

Упоралися

38 %

45 %

Допустили помилки

27 %

17 %

Не впоралися

35 %

38 %

3

Упоралися

9 %

15 %

Допустили помилки

22 %

11 %

Не впоралися

69 %

74 %

За отриманим даними можна побудувати діаграму правильності виконання завдань контрольної роботи, що інтерпретує також рівень сформованості вмінь виконувати побудову графіків.

Друга контрольна робота була на побудову графіка функцій за допомогою персонального комп'ютера.

1. Побудуйте графік функції у = х2 – 2х – 8 й опишіть її властивості.

2. Розв’язати нерівність х2 -2х +3 > 0.

3. Розв’язати біквадратне рівняння х4 -4х2-45 = 0.

4. Побудуйте графік функції y = 2х2 – 5х + 6 й опишіть його властивості.

При виконанні роботи майже всі учні побудували перший графік, результати виконання контрольної роботи (Таблиця 2). Цю саму роботу учні виконували на комп'ютерах. Результативність роботи була високою. Графік функції побудували всі учні.

Таблиця 2

Результати виконання контрольної роботи

Номер завдання

8-а клас

Із клас

1

Упоралися

79 %

33 %

Допустили помилки

17 %

44 %

Не впоралися

4 %

23 %

2

Упоралися

92 %

56 %

Допустили помилки

8 %

11 %

Не впоралися

0 %

33 %

3

Упоралися

25 %

11 %

Допустили помилки

33 %

72 %

Не впоралися

42 %

17%

4

Упоралися

50%

43%

Допустили помилки

37%

39%

Не впоралися

13%

18%

За отриманим даними побудували діаграму правильності виконання завдань контрольної роботи, побудова графіків функцій за допомогою комп'ютера.

Отже, при виконанні роботи на комп'ютері, учні швидше виконують завдання. Майже на 10 хвилин раніше закінчення уроку основна маса учнів уже виконала роботу повністю. На комп'ютерах учні працюють із більшим задоволенням, їм цікаво виконувати побудови графіка.. Крім того, не в кожного учня є власний калькулятор. Тому при роботі з комп'ютером, вони одночасно працюють із калькулятором (виконують необхідні їм обчислення).

Висновок до розділу II

Отже, широке застосування таких технологій як програмне навчання, експертні системи, предметні комп'ютерні уроки сприяє підвищенню пізнавального інтересу й творчої активності учнів, дозволяє здійснювати особистісний підхід до учнів і поетапне засвоєння знань, умінь і навичок. Використання комп'ютерно-орієнтованих засобів навчання на уроках з різних базових дисциплін дає можливість зробити висновок, що ЕОМ - це не тільки потужний інструмент, але й повною мірою третій партнер у педагогічній взаємодії, що дає іншим його учасникам більші можливості в переробці інформації. Отже, переваги застосування нових інформаційних технологій виявляються саме в розв’язуванні психолого-педагогічних проблем, пов'язаних з розвитком особистості учня й підвищенням ефективності процесу навчання.

Висновок

На мою думку, у даній роботі ми довели, що одним із самих вагомих аргументів в інтересах використання засобів в навчальному процесі є незаперечний педагогічний ефект, що був виявлений при впровадженні в навчальний процес програмно - прикладного засобу GRAN 1.

Отже, неважко зрозуміти, що інноваційні технології, яки використовиваються для розвитка творчого мислення, дозволяють будувати пізнавальну діяльність учнів на основі загальнонаукових ідей і методів. Кожен елемент інформаційної структури навчального предмета, як показують дослідження, може бути об'єктивною основою введення новітніх технологій у змісті навчання.

Таким чином, інноваційні технології всебічно впливають на процес навчання - від установлення задач до його організації й результатів, а тому інноваційні технології повинні бути спрямовані на досягнення всебічного розвитку особистості учня в умовах стійкої системи предметного навчання й сприяти посиленню взаємозв'язку утворення, розвитку й вихованню відповідно до провідних загальнонаукових ідей.

Провівши дані експерименти ми переконалися, що використання комп'ютера на уроках математики вже є необхідністю, тому що він є ефективним засобом активізації й підтримки учбово-пізнавальної діяльності. У цьому випадку саме навчальний процес випробовує якісні зміни, стає значно більше привабливим і для учнів і для вчителів, приносить їм задоволення від спілкування, праці й придбаних знань. Комп'ютер вносить у навчання принципово нові пізнавальні засоби, сприяє переходу від пояснювально-узгоджувального типу навчального процесу до нового - активного, що сприяє використання різноманітних компьютерно-орієнтованих систем навчання.

В умовах використання інтерактивної комп'ютерної графіки учні оперують не тільки описовим або аналітичним образом, але й графічним. Представлена в такому виді інформація сприймається учнями більш повно, адже в умовах шкільного навчання живе споглядання у відомій мері здійснюється через наочність. З'єднуючи традиційну методику викладання матеріалу з новітньої, що будується на нових інформаційних технологіях, ми одержали позитивні результати. З огляду на дані експерименту, можна впевнено говорити, що розроблена методика підвищує рівень знань й інтерес до навчання, сприяє активізації учбово-пізнавальної діяльності учнів, їх творчому розвитку.

Впровадження НІТН в методику викладання математики є перспективним напрямком, що буде сприяти не тільки розвитку творчого мислення учнів, але й допоможе забезпечити належний рівень шкільного математичного утворення.

Результати експерименту довели доцільність використання компьютерно-ориентировочных дидактичних систем навчання математиці. Із цього слідує, що ми підтвердили гіпотезу даної роботи: вивчення функцій й їхніх графіків у загальноосвітній школі буде здійснюватися успішно, якщо використати ПК при роботі над побудовою графіків функцій, обчисленні значень функцій.

Таким чином, використання комп'ютера для супроводу навчального процесу при вивченні математики свідчать про незаперечні переваги раціонального сполучення традиційних методичних систем навчання з новими інформаційними технологіями й створення на основі такого сполучення нових інформаційних технологій навчання - вагомих складених компьютерно-ориентировочных систем.

Література

1.         Бевз Г.П. Пробний підручник. Алгебра для 7 – 9 класів – К.: 2000.

2.         Беспалько В.П. Слагаемые педагогической технологии. – М.: Педагогика, 1989.

3.         Верлань А.Ф., Тверезовська Л. О. Основні напрямки застосування інформаційних технологій у сучасній школі // Сучасні інформаційні технології в навчальному процесі. – К.: КПУ імені М. П. Драгоманова. – 1997. – с. 22 – 38.

4.         Вирченко Н.А., Ляшко И. И., Швецов К. И. Графики функций – К.: Наукова думка, 1981.

5.         Вільямс Р., Маклін К. Комп’ютери в школі. - К.: Радянська школа., 1988. – 295 с.

6.         Волков И.П. Учим творчеству. М., Педагогика, 1982, 126 с.

7.         Гермунський Б.С. Компьютеризация в сфере образования: Проблемы и перспективы. – М.: Педагогика, 1987. – 264с.

8.         Головань М.С. Розвиток пізнавальної активності учнів у процесі навчання алгебри і початків аналізу на основі НІТ. – Дисертація кандидата педагогічних наук./Український державний університет ім.. М.П.Драгоманова. – К.: 1997. – 177с.

9.         Горошко Ю.В. Вплив нової інформаційної технології на практичну значимість результатів навчання математики в старших класах середньої школи.- Дисертація кандидата педагогічних наук./Український державний педагогічний університет ім.. М.П.Драгоманова. – К.: 1993.-104с.

10.      Гричулич С. Прийоми індивідуалізації самостійної роботи учнів на уроці./Математика в школі.-2000.- №3.

11.       Гурский И.П. Функции и построение графиков. Пособие для учителей. Изд. 3-е.: ил. и дополненное. –М.: Просвещение, 1986.-215с.

12.      Давидов В.В. Проблемы развивающего обучения. – Педагогика,1986.-240с.

13.      Дмитренко Т.О. Особливості сучасної системи підготовки майбутніх вчителів математики./Математика в школі. - 2000, №4.

14.      Дровозюк В.В. Використання ЕОМ при вивченні теорії границь числових послідовностей у курсі алгебри і початків аналізу 10-го класу шкіл фізико-математичного профілю: Методичні рекомендації.- К.: КДПІ- 1992.-62с.

15.      Жалдак М.І. Комп’ютер на уроках математики. – К.: Техніка. – 1997. – 304с.

16.      Жалдак М.І та інші. Математика з комп’ютером. – К. 2004 – с.77 – 114.

17.      Жалдак М.І. Проблеми інформації навчального процесу в школі й вузі./ Сучасна інформаційна технологія в навчальному процесі. Збірник наукових праць. – К.: НПУ ім.. М.П. Драгоманова. -1991. – с. 3 – 16.

18.      Жалдак М.І. Яким бути шкільному курсу «Основи інформатики»./Комп’ютер у школі та сім’ї. – К.: 1998.- №1 – с.3 – 8.

19.      Жалдак та ін. Теорія ймовірностей і математична статистика з елементами інформаційної технології. – К.: Вища школа, 1995. – 352с.

20.      Жильців О. Комп’ютер на уроках математики./ Математика в школі.- 1999.-№3.

21.      Жильців О.Б. Розвиток розумової діяльності учнів 8 класів середньої школи при вивченні математики з використанням НІТ. – Дисертація кандидата педагогічних наук./ УДПУ ім.. М.П.Драгоманова. – К.: 1994. – 227с.

22.      Зарецкий Д.А., Зарецкая З.А., Превин Ю.А. Педагогические и технологические основы создания программно-методических систем./ Информатика и образование. – 1993, №4.

23.      Звенигородский Р.А. Вычислительная техника и ее применение. Пособие для вчителя. – М.: Просвещение, 1987. – 48с.

24.      Зенкин А.А. Когнитивная компьютерная графика. – М.: Наука, 1991. – 192с.

25.      Зівакіна О.А. Математика з комп’ютером. / Комп’ютер в школі та сім’ї. – 1999, №5.

26.      Кларин М.В. Технология обучения: идеал и реальность. - Рига: Эксперимент, 1996, 118 с.

27.      Литвиненко Г. Про концепцію математичної освіти в Україні./ Математика в школі. – 1998, №2.

28.      Литвиненко Р.М., Возняк Г.М. Математика. Пробний підручник для 8- 9 класу середньої школи. – Л.: Освіта, 1996. – 287с.

29.      Лошкарева Н.А. Межпредметныые связи как средство совершенствования учебно-воспитательного процесса. – М.: Просвещение, 1981. – 100с.

30.      Лупан І.В. Аналіз досвіду використання засобів НІТ у навчанні математики./ Сучасні інформаційні технології у навчальному процесі. – К.: НПУ ім.. М.П. Драгоманова. – 1997. – с. 22 – 38.

31.      Лупан І.В. Елементи когнітивної комп’ютерної графіки на уроках алгебри та початків аналізу./ Комп’ютер у школі та сім’ї. – 2000, №1.

32.      Магибиц Е.И. Психологические основы компьютерной грамотности. – К.: Выща школа,1988. – 215с.

31