
- •Системы электроснабжения.
- •1. Нагрев и охлаждение проводников.
- •1.1. Переходный процесс нагрева – охлаждения.
- •1.2. Длительно допустимый ток.
- •1.3. Зависимость длительно допустимого тока от сечения.
- •1.4. Расчёт температуры проводника при заданной нагрузке.
- •1.5. Корректировка допустимого тока в зависимости от температуры окружающей среды и количества параллельно проложенных проводников.
- •1.6. Выбор сечения по длительно допустимому току.
- •1.7. Постоянная времени нагрева τ и длительность расчетного максимума нагрузки.
- •1.8. Расчет температуры проводника при прохождении тока кз и проверка кабелей на невозгорание.
- •2. Экономическое сечение и экономическая плотность тока.
- •2.1. Расчетные затраты на электропередачу.
- •2.2. Экономическое сечение и экономическая плотность тока.
- •2.3. Математическая модель затрат на передачу мощности по лэп.
- •3. Расчет, анализ и нормирование потерь электроэнергии в электрических сетях.
- •3.1. Структура фактических (отчетных) потерь электроэнергии.
- •3.2. Термины и определения.
- •3.3. Нагрузочные потери.
- •3.4. Метод средней мощности
- •3.5. Метод максимальной мощности рм
- •3.6. Потери холостого хода (хх).
- •3.7. Климатические потери
- •3.8. Расход электроэнергии на собственные нужды подстанций
- •3.9. Погрешности средств измерения
- •3.10. Коммерческие потери
- •4.1. Определения
- •4.2. Падение и потеря напряжения в 3-х фазной лэп с симметричной нагрузкой
- •4.3. Расчет потери напряжения в ответвлениях от 3-х фазной лэп
- •4.5. Методы регулирования напряжения в электрических сетях
- •4.6. Регулирование напряжения в цп с помощью трансформатора
- •4.7. Расчет вторичного напряжения трансформатора с учетом положения переключателя отпаек
- •4.8. Регулирование напряжения в цп с помощью трансформаторов с рпн
- •4.9. Допустимая (располагаемая) потеря напряжения
- •4.10. Продольно-емкостная компенсация.
- •5. Компенсация реактивной мощности
- •5.1. Природа реактивной мощности (рм).
- •5.2. Реактивная мощность и потери активной мощности.
- •5.3. Реактивная мощность и потеря напряжения
- •5.4 Потребители реактивной мощности (рм)
- •5.6. Источники р.М.
- •5.7. Синхронные двигатели
- •5.8. Конденсаторные батареи
- •5.9. Выбор компенсирующих устройств
- •5.10. Выбор размещения кб
- •5.11. Наивыгоднейшее распределение кб в распределительной электрической сети.
- •5.12. Регулирование мощности кб
- •5.13. Автоматическое регулирование конденсаторных батарей по реактивной мощности
- •6. Режимы нейтрали в сетях напряжением ниже 1000 в
- •6.1. Классификация электрических сетей.
- •6.2. Система tn- нейтраль заземлена, корпуса занулены
- •6.2.1. Характеристика и свойства сетей tnc, tns:
- •6.2.2. Расчет тока однофазного кз, напряжений прикосновения и смещения нейтрали.
- •6.3. Система tt – нейтраль и корпуса присоединены к разным заземляющим устройствам.
- •6.3.1. Характеристика и свойства сети тт:
- •6.3.2. Расчет тока однофазного кз, напряжений прикосновения и смещения нейтрали, расчет требуемой чувствительности узо.
- •6.4. Система it- нейтраль изолирована, корпуса заземлены.
- •6.4.1. Характеристика и свойства сети it:
- •6.4.3. Расчет напряжений прямого и косвенного прикосновений в сети it.
- •7. Автоматические выключатели
- •7.1 Определения
- •7.2. Описание
- •7.3 Основные характеристики автоматического выключателя
- •7.3.1. Номинальный ток (In)
- •7.3.2. Наибольшая предельная отключающая способность (Icu или Icn)
- •7.3.3. Наибольшая рабочая отключающая способность (Ics)
- •7.3.4. Время- токовые характеристики расцепителей
- •7.3.5 Типы расцепителей
- •7.3.6. Категория применения (a или b) и номинальный кратковременно выдерживаемый ток (Icw)
- •7.4. Ограничение тока короткого замыкания, токоограничивающие автоматы
- •7.5. Согласование характеристик автоматических выключателей, каскадирование
- •7.6. Селективность отключения
- •7.6.4. Логическая селективность
- •7.7. Выбор автоматического выключателя и уставок его расцепителей
- •8. Пуск и самозапуск асинхронных электродвигателей
- •8.1. Условия успешного пуска асинхронного двигателя (ад)
- •8.2. Механические характеристики ад
- •8.3. Механические характеристики приводимых механизмов
- •8.4. Учет снижения пускового тока в процессе разгона
- •8.5. Динамический (избыточный) момент и время разгона
- •8.5. Тормозной момент, кривая выбега и время остановки
- •8.5. Проверка возможности одиночного и группового самозапуска ад
- •8.6. Проверка допустимости колебания напряжения для работающих двигателей и освещения при пуске ад
- •8.7. Пример
- •8.8. Устройства плавного пуска (упп) (Softstart)
- •Два способа включения тиристоров
- •9. Схемы распределения электроэнергии.
- •9.1. Требования, предъявляемые к схемам.
- •9.2. Внутрицеховые электрические сети.
- •9.3. Схемы распределительных сетей напряжением выше 1000 в.
- •Список литературы
5.11. Наивыгоднейшее распределение кб в распределительной электрической сети.
При естественном распределении токов в параллельных ветвях электрической цепи суммарная выделяемая в ветвях мощность минимальна. Покажем это на примере простой схемы, состоящей из двух параллельно включенных сопротивлений (рис.5.12).
Рис.5.12. Распределение токов в параллельной цепи.
Известно,
что в параллельной цепи токи в ветвях
обратно пропорциональны сопротивлениям:
,
.
Пользуясь этими выражениями, легко
рассчитать токи в ветвях (рис.5.12):I1
= 2А, I2
= 1A.
Мощность, выделяемая в двух сопротивлениях
ветвей: Р = 22
· 3 + 12
· 6 = 18 Вт.
При распределении токов I1 = 1,5А, I2 = 1,5A мощность, выделяемая в двух сопротивлениях ветвей: Р = 1,52 · 3 + 1,52 · 6 = 20,25 Вт.
При распределении токов I1 = 2,5А, I2 = 0,5A мощность, выделяемая в двух сопротивлениях ветвей: Р = 2,52 · 3 + 0,52 · 6 = 20,25 Вт.
Вывод: при токах, обратно пропорциональных сопротивлениям, мощность минимальна; при любом другом распределении мощность возрастает.
Критерием оптимального распределения конденсаторов вэлектрической сети является минимум суммарной активной мощности, выделяющейся в проводниках, при прохождении по ним реактивной мощности (рис.5.13).
Рис.5.13. Оптимальное распределение конденсаторов в радиальной сети.
Формулировка
задачи: в радиальной сети, состоящей из
n
линий с известными реактивными нагрузками
Qi
и сопротивлениями Ri
распределить РМ батареи Qк
по всем линиям по критерию минимума
потерь активной мощности в сети. Общая
РМ нагрузки:
.
Мощность
КБ, подлежащая распределению
.
Реактивные
токи Iпкi,
протекающие по линиям должны распределиться
обратно пропорционально сопротивлениям
,
.где
,
,
.
,
откуда:
.
Мощность КБ на линии i QKi , будет тем больше, чем больше реактивная нагрузка линии Qi и чем больше ее сопротивление.
Алгоритм аналогичного расчета в магистральной сети состоит из двух этапов:
расчеты эквивалентных сопротивлений относительно точек ответвлений от магистрали;
последовательные расчеты
для точек ответвлений.
5.12. Регулирование мощности кб
На практике нагрузка потребителей электроэнергии не остается постоянной в течение суток, а непрерывно меняется.
Рис. 5.14. Суточные графики реактивной мощности.
а). Компенсация с помощью нерегулируемой КБ; б). Компенсация с помощью автоматически регулируемой одноступенчатой КБ.
На рис.5.14 а приведен пример суточного графика реактивной мощности цеха машиностроительного завода, работающего в две смены - Qнагр. Если подключить нерегулируемую КБ мощностью Qк = Qср, (где Qср - среднесуточная реактивная мощности нагрузки), то график РМ после компенсации будет иметь вид, показанный на рис.5.14. а «Q после компенсации». Естественно, что круглосуточное подключение компенсирующей мощности Qк = Qср приведет к перекомпенсации в ночные часы, причем по модулю реактивная мощность в этот период увеличится по сравнению с Q до компенсации. Днем реактивная мощность снизится. В итоге потери активной мощности уменьшатся в дневной период, но могут возрасти ночью, и эффект от подключения КБ будет невысоким. Для достижения требуемого эффекта мощность КБ должна регулироваться.
Рассмотрим, каким станет график реактивной мощности после компенсации с помощью батареи конденсаторов, состоящей из одной секции, управляемой автоматически в функции результирующей реактивной мощности ( рис. 5.14. б ). Полная мощность батареи Qк выбрана по максимальной потребляемой реактивной мощности Qмакс. Реактивная нагрузка ночью мала, КБ отключена. К утру нагрузка возрастает, КБ автоматически включается, результирующая РМ скачком снижается на величину Qк и становится отрицательной (график «Q после компенсации», рис.3 б). Вечером при снижении РМ батарея автоматически отключается (график Qк).
Реактивная мощность после компенсации по абсолютному значению в любой момент времени меньше, чем при использовании нерегулируемой КБ .
Учитывая большие преимущества регулирования мощности компенсирующих устройств (КУ), в настоящее время разработаны различные нормативные материалы, которые ограничивают или запрещают применение нерегулируемых КУ в системах электроснабжения промышленных предприятий.
Рассмотрим более подробно принципы автоматического регулирования мощности КУ.
На практике применяются различные способы регулирования мощности КУ:
а) по времени суток - самый простой способ, при котором включение и отключение КУ происходит в заранее определенное время суток независимо от электрических параметров;
б) по реактивной мощности - целью является обеспечение минимальной результирующей РМ в узле нагрузки;
в) по напряжению - целью является обеспечение стабильного напряжения на шинах узла нагрузки с помощью компенсации РМ;
г) по напряжению с коррекцией по РМ - целью является обеспечение минимального отклонения напряжения в узле нагрузки с одновременной рациональной компенсацией РМ.