
- •А.А. Абросимов
- •Предисловие
- •Введение
- •1. Предмет телемеханики
- •1.1. Определение, особенности и основные проблемы телемеханики
- •1.2. Краткая история развития телемеханики
- •1.3. Применение систем телемеханики в самарской области
- •Ключевые термины и понятия
- •2.2. Телемеханические функции
- •2.3. Основные структуры систем телемеханики
- •Ключевые термины и понятия
- •3. Организация многоканальной телемеханической связи
- •3.1. Временное разделение сигналов
- •3.2. Частотное разделение сигналов
- •3.3. Частотно-временное разделение сигналов
- •Ключевые термины и понятия
- •Частотное разделение сигналов – разделение сигналов, при котором каждый сигнал занимает свой частотный интервал, не занятый другими сигналами.
- •Контрольные вопросы
- •4. Коды в телемеханике
- •4.1. Код и его характеристики
- •4.2. Классификация кодов
- •4.3. Общие способы представления кодов
- •4.4. Первичные коды
- •4.4.1. Единичный (унитарный, числоимпульсный) код
- •4.4.2. Единичный позиционный код
- •4.4.3. Единично-десятичный код
- •Примеры единично-десятичного кода
- •4.4.4. Двоичный нормальный (натуральный) код
- •4.4.5. Двоично-десятичные коды
- •Примеры двоично-десятичного кода с весовыми коэффициентами 8-4-2-1
- •4.4.6. Код Грея
- •4.5. Корректирующие коды. Принципы обнаружения и исправления ошибок
- •4.6. Коды с обнаружением ошибок
- •4.6.1. Коды, построенные путём уменьшения числа используемых комбинаций
- •4.6.1.1. Код с постоянным весом
- •Пятиразрядный код с двумя единицами и пример семиразрядного кода с тремя единицами
- •4.6.1.2. Распределительный код
- •4.6.2. Коды, построенные добавлением контрольных разрядов
- •4.6.2.1. Код с проверкой на чётность
- •Примеры построения кода с проверкой на чётность
- •4.6.2.2. Код с числом единиц, кратным трём
- •Примеры кода с числом единиц, кратным трём
- •4.6.2.3. Код с удвоением элементов (корреляционный код)
- •4.6.2.4. Инверсный код
- •Примеры инверсного кода
- •4.7. Коды с обнаружением и исправлением ошибок
- •4.7.1. Коды Хэмминга
- •Число контрольных символов в зависимости от числа информационных разрядов для исправления одной ошибки
- •Пример предварительной таблицы кода Хэмминга
- •Проверочная таблица кода Хэмминга
- •Проверочная таблица кода Хэмминга, заполненная информационными символами
- •Проверочная таблица принятой кодовой комбинации примера 4.2
- •Примеры кодов Хэмминга, обнаруживающих две ошибки и исправляющих одну ошибку
- •4.7.2. Циклические коды
- •Математические основы циклических кодов.
- •Принципы построения циклических кодов.
- •Единичная и единичная транспонированная матрицы четырёхразрядного двоичного кода
- •Получение остатков для строк единичной транспонированной матрицы
- •Дополнительная матрица контрольных элементов
- •Получение частных остатков для единичной матрицы
- •Определяющая матрица четырёхразрядного циклического кода
- •Образующий многочлен.
- •Неприводимые многочлены
- •Образующие многочлены для обнаружения единичных и двойных ошибок
- •Декодирование циклических кодов.
- •Укороченные циклические коды.
- •Образующая матрица укороченного (12, 4) псевдоциклического кода
- •4.7.3. Итеративные коды
- •Ключевые термины и понятия
- •5. Сигналы в телемеханике
- •5.1. Модуляция сигналов
- •5.2. Амплитудная модуляция
- •Амплитудная модуляция с двумя боковыми полосами.
- •Амплитудная модуляция с одной боковой полосой.
- •Амплитудная манипуляция.
- •5.3. Частотная модуляция
- •Частотная манипуляция.
- •Реализация частотной модуляции.
- •5.4. Двукратная непрерывная модуляция
- •5.5. Импульсные методы модуляции
- •5.5.1. Амплитудно-импульсная модуляция
- •5.5.2. Широтно-импульсная модуляция
- •5.5.3. Фазоимпульсная модуляция
- •5.5.4. Частотно-импульсная модуляция (чим)
- •5.5.5. Кодоимпульсная модуляция (ким)
- •5.5.6. Дельта-модуляция
- •5.5.7. Разностно-дискретная модуляция (рдм)
- •5.5.8. Лямбда-дельта-модуляция
- •5.5.9. Многократные методы модуляции
- •5.6. Спектры импульсных сигналов
- •Ключевые термины и понятия
- •Модуляция – образование сигнала путем изменения параметров переносчика под воздействием сообщения.
- •Контрольные вопросы
- •6. Линии и каналы связи в телемеханике
- •6.1. Линии связи и их классификация
- •Типы и виды линии связи
- •6.2. Проводные линии связи
- •Первичные параметры проводных линий связи
- •6.3. Каналы связи по линиям электропередач
- •6.4. Каналы связи по радио
- •Частотные диапазоны для передачи информации
- •Ключевые термины и понятия
- •Канал связи – совокупность технических средств для независимой передачи информации от источника к получателю.
- •Контрольные вопросы
- •7. Помехоустойчивость систем телемеханики
- •7.1. Помехи и их характеристики
- •7.2. Искажение сигналов под действием помех
- •7.3. Теория потенциальной помехоустойчивости в.А. Котельникова
- •7.4. Помехоустойчивость реальных приёмников телемеханических сигналов
- •Требования к достоверности контрольной и управляющей информации согласно гост 26.205-83
- •7.5. Помехоустойчивость передачи кодовых комбинаций при независимых ошибках
- •7.6. Методы повышения помехоустойчивости
- •7.6.1. Классификация методов повышения помехоустойчивости
- •7.6.2. Передача с повторением
- •7.6.3. Передача с обратной связью
- •Ключевые термины и понятия
- •Контрольные вопросы
- •8. Принципы построения телемеханических систем
- •8.1. Характеристики систем телеизмерения
- •8.2. Цифровые системы телеизмерений
- •8.3. Синхронизация в системах с временным разделением сигналов
- •8.4. Синфазирование в системах с временным разделением сигналов
- •Ключевые термины и понятия
- •Контрольные вопросы
- •9. Реализация систем телемеханики
- •9.1. Структурные схемы основных функциональных блоков
- •9.1.1. Коммутаторы
- •9.1.2. Устройство повышения достоверности
- •9.1.3. Устройство масштабирования
- •9.1.4. Генератор тактовых импульсов
- •9.2. Программно-техническая реализация функциональных блоков на программируемых логических контроллерах
- •Ключевые термины и понятия
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Оглавление
- •Телемеханика
- •443100, Г. Самара, ул. Молодогвардейская, 244. Главный корпус
- •443100, Г. Самара, ул. Молодогвардейская, 244. Корпус №8
7.3. Теория потенциальной помехоустойчивости в.А. Котельникова
Помехоустойчивостью называют способность системы правильно принимать информацию несмотря на воздействие помех.
Теория помехоустойчивости элементарного сигнала при флуктуационных помехах разработана В.А. Котельниковым и развита рядом других ученых.
Под элементарным сигналом понимают любой сигнал, который может принимать значения максимума, что соответствует символу 1, или минимума, что соответствует символу 0. Таким элементарным сигналом может быть видео- или радиоимпульс.
Трансформация сигналов. Трансформация телемеханического сообщения – необнаруженное изменение телемеханического сообщения, возникшее в процессе передачи под воздействием помех и приводящее к приему ложного сигнала (ГОСТ 26.005-82). Элементарный сигнал может передавать дискретные сообщения типа команд. Во многих промышленных системах телемеханики, выполняющих функции ТУ-ТС, передача одного видео- или радиоимпульса означает передачу одной команды или одного сигнала телесигнализации.
Если команда, соответствующая сигналу 1, подавлена помехой, то это означает, что сигнал 1 трансформировался (перешёл) в сигнал 0. Вероятность подавления команды или сигнала телесигнализации обозначают Р10 (вероятность трансформации 1 в 0). Вероятность ложной команды или ложного сигнала телесигнализации возможна, если помеха возникает при отсутствии сигнала, т.е. когда посланный сигнал 0 трансформируется в сигнал 1 (P01).
Таким образом, при передаче элементарного сигнала 1 или 0 возможны два результата передачи:
а) правильная передача: при этом 1 переходит в 1, т.е. 1 1, а 0 – в 0, т.е. 00, обозначим Р(11) = Р11 и Р(00) = Р00;
б) неправильная передача: при этом 1 переходит в 0, т.е. 10, а 0 – в 1, т.е. 01, обозначим Р(10)=Р10 и P(0l)=P01.
Рассмотрим помехоустойчивость передачи элементарного сигнала при флуктуационных помехах. Наиболее высокой помехоустойчивостью обладает идеальный приемник В.А. Котельникова, который обеспечивает при данном способе передачи наилучшую помехоустойчивость, называемую потенциальной.
Потенциальная помехоустойчивость – предельно допустимая помехоустойчивость, которая может быть обеспечена идеальным приемником.
Идея построения идеального приемника заключается в следующем. Зная, какие сигналы должны быть переданы, например A1(t) и A2(t), и имея их образцы, создаваемые генераторами (рис. 7.5), сравнивают полученные сигналы по очереди с этими образцами и, вычисляя энергию разности принятого сигнала и образца этих сигналов, относят принятый сигнал к тому образцовому сигналу, для которого эта разность минимальна.
Рис. 7.5.Принцип построения идеального приемника В.А. Котельникова
Например, передаются два сигнала одинаковой длительности, но первый с большей, а второй с меньшей амплитудой. У идеального приемника тоже есть два таких сигнала, однако неизвестно, какой сигнал послан. Пришедший сигнал искажен помехами, но после сравнения, если окажется, что он ближе подходит к большему сигналу, считают, что был послан именно первый сигнал.
Это сравнение сигналов заключается в определении энергии разности между принятым сигналом x(t) и каждым из образцов передаваемых сигналов. Если, например, переданы сигналыA1(t) иA2(t) длительностьюτкаждый, то на приемной стороне необходимо вычислить интегралы:
(7.4)
Сигналы A1(t) и A2(t) должны быть заранее известны на приемной стороне. Считают, что был передан тот сигнал, для которого значение Ii минимально, i=1,2. Если I2 – I1>0, то считают принятым сигнал A1, если I2 – I1<0, то сигнал A2. В тех случаях, когда опасность принять сигнал A1 вместо А2 и наоборот неодинакова, идеальный приемник должен сравнивать разность I2 –I1 не с нулем, а с некоторой величиной . Если I2 – I1>, то считают принятым сигнал A2, если I2 – I1<, то сигнал А1. Изменением значения величины можно регулировать соотношение вероятностей превращения одного сигнала в другой.
Вследствие того, что параметры помехи зависят от полосы пропускания приемника, вводят понятие удельной помехи
(7.5)
где U п. ск – среднеквадратичное значение напряжения помехи;
F – полоса пропускания приёмника.
При этом величина, характеризующая потенциальную помехоустойчивость, равна отношению энергии сигнала к значению удельной помехи:
(7.6)
Помехоустойчивость идеального приемника рассчитывают по формулам Котельникова [8]:
(7.7)
где V – символ, обозначающий вероятностный интеграл, величины которого приведены в таблице [8];
= Uпор/Uп.ск. расчётный коэффициент;
Uпор – пороговое значение сигнала.
При симметричном канале, когда вероятности подавления команды и образования ложной команды одинаковы,
(7.8)
Котельниковым В.А. создана методика и выполнены расчёты потенциальной помехоустойчивости для различных способов передачи при флуктуационных помехах.