
- •А. Н. Минков
- •Содержание
- •1 Конструкционная прочность и пути её повышения
- •1.1 Общие положения
- •1.2 Конструкционная прочность материалов
- •1.2.1 Общие положения
- •1.2.2 Механические свойства и способы их
- •1.3 Методы повышения конструкционной
- •1.4 Железоуглеродистые сплавы - основные
- •1.4.1 Общие положения
- •1.4.2 Углеродистые стали
- •1.4.3 Чугуны
- •2 Термическая обработка
- •2.1 Общие положения термической обработки
- •2.2 Превращения при нагревании и охлаждении стали
- •2.2.1 Образование аустенита при нагревании
- •2.2.2 Превращения аустенита при охлаждении
- •2.2.3 Превращения мартенсита при нагревании
- •2.3 Виды термической обработки
- •2.3.1 Отжиг
- •2.3.2 Закалка
- •Vкрит.- критическая скорость закалки
- •2.3.3 Отпуск
- •2.3.4 Дефекты термической обработки
- •2.4 Поверхностное упрочнение
- •2.4.1 Общие положения
- •2.4.2 Поверхностная закалка
- •2.4.2.1 Закалка с индукционным нагревом
- •2.4.2.3 Поверхностная закалка в электролитах
- •2.4.2.4 Закалка с нагревом лазерным лучом
- •2.4.3 Химико-термическая обработка (хто)
- •3 Легированные стали
- •3.1 Общие положения
- •Легированные стали можно классифицировать:
- •- По структуре в равновесном состоянии;
- •- По структуре образцов после охлаждения на воздухе;
- •- По назначению.
- •3.2 Конструкционные стали
- •3.2.1 Стали повышенной обрабатываемости
- •3.2.2 Низкоуглеродистые стали для цементации
- •3.2.3 Среднеуглеродистые стали для улучшения
- •3.2.4 Рессорно-пружинные стали
- •3.2.5 Подшипниковые стали
- •3.2.6 Высокопрочные стали
- •3.2.7 Износостойкие стали и сплавы
- •3.3 Инструментальные стали
- •3.3.1 Общие положения
- •3.3.2 Стали для режущего инструмента
- •3.3.2.1 Углеродистые и легированные инструментальные стали
- •3.3.2.2 Быстрорежущие стали
- •3.3.3 Штамповые стали
- •3.3.4 Стали для измерительных инструментов
- •3.4 Специальные стали
- •3.4.1 Коррозионностойкие (нержавеющие) стали
- •3.4.2 Жаростойкие стали и сплавы
- •3.4.3 Жаропрочные стали и сплавы
- •3.4.4 Магнитные стали и сплавы
- •4 Цветные металлы и сплавы
- •4.1 Алюминий и сплавы на его основе
- •4.1.1 Общая характеристика алюминия
- •4.1.2 Алюминиевые сплавы
- •4.2 Магний и сплавы на его основе
- •4.2.1 Общая характеристика магния и его сплавов
- •4.2.2 Деформируемые магниевые сплавы
- •4.2.3 Литейные магниевые сплавы
- •4.3 Титан и сплавы на его основе
- •4.3.1 Общая характеристика титана и его сплавов
- •4.3.2 Промышленные титановые сплавы
- •4.4 Бериллий и сплавы на его основе
- •4.4.1 Свойства бериллия
- •4.4.2 Бериллиевые сплавы
- •4.5 Медь и ее сплавы
- •4.5.1 Общая характеристика меди и её сплавов
- •4.5.2 Латуни
- •4.5.3 Бронзы
- •5 Неметаллические конструкционные материалы
- •5.1 Пластические массы
- •5.2 Стекло
- •5.2.1 Строение и состав неорганических стекол
- •5.2.2 Ситаллы
- •5.2.3 Органическое стекло
- •5.3 Древесина
- •Список литературы
- •Курс лекций по дисциплине
- •Для студентов механических специальностей
- •Часть 2 «Материаловедение»
5 Неметаллические конструкционные материалы
5.1 Пластические массы
Пластмассами называют искусственные материалы, получаемые на основе органических полимерных связующих веществ.
В качестве связующих для большинства пластмасс используют синтетические смолы. Связующее может быть и единственным компонентом, как, например, в полиэтиленах, органических стеклах и др.
Другим важным компонентом является наполнитель, придающий материалу те или иные специфические свойства. По виду наполнителя пластмассы делят на порошковые, волокнистые, слоистые и газонаполненные.
Для повышения эластичности и облегчения обработки в пластмассы добавляют пластификаторы.
Все полимеры по отношению к нагреву подразделяют на термопластичные и термореактивные. Термопласты при повышении температуры становятся пластичными, а после охлаждения вновь затвердевают, приобретая первоначальные свойства. Никаких необратимых химических превращений в процессе нагрева и охлаждения термопласты не претерпевают. Термореактивные полимеры при нагреве размягчаются, затем вследствие протекания химических реакций затвердевают и в дальнейшем остаются в твердом состоянии, которое является термостабильным.
Особенностями пластмасс являются малая плотность и низкая теплопроводность. Они обладают хорошими электро-, тепло, звукоизоляционными свойствами. Это определяет использование пластмасс как специальных материалов.
Механические свойства пластмасс значительно ниже, чем у металлических материалов, они подвержены старению, а при длительном пребывании под нагрузкой возможны проявления ползучести. Эти обстоятельства не позволяют использовать пластмассы для изготовления ответственных, нагруженных деталей. В то же время высокие антифрикционные и фрикционные, а также виброгасящие свойства, определяемые малым модулем упругости, дают возможность для их применения в ответственных узлах, определяющих работоспособность оборудования.
В качестве антифрикционных материалов используются как термореактивные (текстолит и ДСП), так и термопластичные (капрон, фторопласт) пластмассы. Отличительными особенностями этих материалов является то, что их работоспособность не ухудшается при отсутствии смазки, а также при попадании воды в зону трения. К тому же износ стального вала, работающего в капроновых подшипниках, значительно меньше, чем в бронзовых или баббитовых подшипниках.
Вместе с тем следует отметить, что применение антифрикционных пластиков ограничено. Они работоспособны лишь в малонагруженных узлах трения, т. е. при небольших давлениях (из-за низких механических свойств) и невысоких скоростях (при эксплуатации температура не должна превышать 80°С).
Наиболее высокими антфрикционными свойствами обладает фторопласт-4. Коэффициент трения в парах со сталью и чугуном у фторопласта в несколько раз ниже, чем у бронз.
Фторопласт, капрон и ряд других полимерных материалов применяют для изготовления подшипников скольжения. Применяются также комбинированные металлопластиковые подшипники, выдерживающие большие нагрузки.
В качестве фрикционных материалов для тормозных устройств и фрикционных муфт сцепления наиболее широкое применение нашли фрикционные асбополимерные материалы (ФАПМ), так называемые «феродо». Для изготовления ФАПМ используют каучуковое, смоляное и комбинированное связующие. Асбест используют в виде ткани, картона, асбестовой массы. ФАПМ на каучуковом связующем (ЭМ-1, ЭМ-2) – мягкие эластичные, допускающие гибку с различными радиусами. Эти материалы не обладают высокой термостойкостью, температура эксплуатации не выше 200°С.
Наиболее высокой термостойкостью обладают ФАПМ марок Ретинакс-А и Ретинакс-Б, которые допускают кратковременные нагревы до 1000 и 700°С, соответственно, и длительно работают при нагреве поверхности до 300оС. Ретинакс-А формуется из асбосмоляного материала, армированного латунной проволокой, а Ретинакс-Б не армируется проволокой.
Основное применение ФАПМ – сменные накладки. Для увеличения срока службы узлов трения материалы пар трения и их твердость следует выбирать так, чтобы обеспечивался малый износ металлических контртел, а не сменных накладок. Твердость различных ФАПМ колеблется в пределах 15-48НВ.