
- •Содержание
- •1. Основные понятия и определения
- •1.1. Принятие решений как особый вид человеческой деятельности
- •1.2. Люди принимающие решения и их роль в процессе принятия решений
- •1.3. Альтернативы
- •1.4. Критерии
- •1.5. Оценка важности критериев
- •1.6. Многодисциплинарный характер науки о принятии решений
- •2. Анализ задач и методов принятия решений
- •2.1. Схема процесса принятия решений
- •Принятие решения Отыскание рациональных альтернатив
- •Разработка плана и реализация принятого решения Оценка фактически достигнутых результатов
- •2.2. Классификация задач принятия решений
- •2.3. Классификация методов принятия решений
- •2.4. Системы поддержки принятия решений
- •3. Оптимизационные модели
- •3.1 Оптимизационная модель затрат на рекламу .
- •3.2. Выбор оптимального медиа-плана кампании
- •Решение.
- •3.3. Оптимизационные модели составления медиа-плана в случае нескольких критериев (целевое программирование).
- •3.4. Построение кривой достижимости охвата по различным категориям телеаудитории (Парето-оптимальный подход).
- •4. Динамическое программирование
- •4.1. Основная идея и особенности вычислительного метода динамического программирования
- •4.2. Задачи управления запасами
- •4.2.1. Общая характеристика
- •4.2.2. Задача управления запасами при детерминированном
- •4.2.3. Задача управления многономенклатурными запасами при ограничении на емкость склада
- •4.2.4. Модель управления запасами при вероятностном спросе и мгновенных поставках
- •4.2.5. Динамические задачи управления запасами
- •5. Принятие решений в условиях неопределенности. Метод анализа иерархий.
- •5.1. Иерархическое представление проблемы
- •5.1.1. Структуризация задачи в виде иерархии
- •5.1.2. Парное сравнение альтернатив (метод парных сравнений)
- •5.1.3 Вычисление коэффициентов важности для элементов каждого уровня
- •5.1.4. Подсчет количественной оценки качества альтернатив (иерархический синтез)
- •2.2. Метод сравнения объектов относительно стандартов [2]
- •5.3. Многокритериальный выбор в иерархиях с различным числом и составом альтернатив под критериями [2]
- •5.4. Общая характеристика подхода метода анализа иерархий
- •6. Элементы теории матричных игр.
- •6.1. Игровой подход к принятию решений в условиях неопределённости.
- •6.2. Основные понятия теории игр.
- •6.3. Сведения матричной игры к задаче линейного программирования [2, 3]
- •6.4. Матричная игра двух лиц с ненулевой постоянной суммой [1]
- •Вопрос 1. Нижняя цена матричной игры определяетсяследующей формулой:
- •Вопрос 2. Верхняя цена матричной игры определяетсяследующей формулой:
- •Вопрос 4. Какова нижняя и верхняя цена игры для нижеприведенной матрицы?
- •Вопрос 5. Чему равно значение элемента матрицы игры в сед-ловой точке?
- •Вопрос 6. Используя свойство доминирования стратегий игроков, максимально редуцируйте следующую матрицу игры:
- •Вопрос 7. Найдите цену следующей игры
- •Вопрос 10. Постройте платежную матрицу следующей игры.
- •7. Теория массового обслуживания
- •3. Марковские смо.
2.2. Классификация задач принятия решений
Задачи принятия решений отличаются большим многообразием, классифицировать их можно по различным признакам, характеризующим количество и качество доступной информации. В общем случае задачи принятия решений можно представить следующим набором информации:
где
– постановка задачи;
–множество
допустимых альтернативных вариантов;
–множество
методов измерения предпочтений;
–множество
методов измерения предпочтений (например,
использование различных шкал);
–отображение
множества допустимых альтернатив в
множество критериальных оценок;
–системы
предпочтений эксперта;
-
решающее правило, отражающее систему
предпочтений.
Любой из элементов этого набора может служить классификационным признаком принятия решений.
По виду отображения F. Попытки применения исследования операций для решения различного класса задач выявили большие различия в природе изучаемых систем. В связи с этим Г. Саймоном и А. Ньюэллом была предложена следующая классификация.
Хорошо структурированные или количественно сформулированные проблемы, в которых существенные зависимости выяснены настолько хорошо, что они могут быть выражены в числах или символах, принимающих в конце концов численные оценки.
Слабоструктурированные или смешанные проблемы, которые содержат как качественные, так и количественные элементы, причем качественные, малоизвестные и неопределенные стороны имеют тенденцию доминировать.
Неструктурированные или качественно выраженные проблемы, содержащие лишь описание важнейших ресурсов, признаков и характеристик, количественные зависимости между которыми совершенно неизвестны.
Согласно этой классификации проблемы исследования операций можно назвать хорошо структурированными. В типичных задачах исследования операций объективно существует реальность, допускающая строгое количественное описание и определяющая существование единственного очевидного критерия качества. Этот класс задач широко применяется при оценке и выборе элементов технических устройств, например: оптимизация форм корпуса самолетов или кораблей, управление электростанцией, расчет радиоактивного заражения местности, минимизация затрат на перевозки и т.д. Для этих задач существуют адекватные математические модели процессов и/или устройств, и существуют данные, позволяющие априорно определить параметры моделей.
Характерными особенностями проблем третьего класса являются:
уникальность выбора в том смысле, что каждый раз проблема является новой для ЛПР, либо обладает новыми особенностями по сравнению со встречавшейся ранее подобной;
неопределенность в оценках альтернативных вариантов решений проблемы;
качественный характер оценки вариантов решения проблемы, чаще всего формулируемой в словесной форме;
оценка альтернатив может быть получена лишь на основе субъективных предпочтений ЛПР или ГПР;
критериальные оценки могут быть получены только от экспертов.
К этому классу проблем относятся, например, проблемы планирования научных исследований, конкурсного отбора проектов, планирования развития города и т.д.
Ко второму классу проблем относят многие смешанные задачи, использующие как эвристические предпочтения, так и аналитические модели. Сюда относятся многие проблемы, связанные с экономическими и политическими решениями, проблемы медицинской диагностики и т.п.
По постановке задачи Т. Задачи принятия решений можно разбить на две группы:
Задачи первой группы:
Дано:
группа из
альтернатив-вариантов решения проблемы
и
критериев, предназначенных для оценки
альтернатив; каждая из альтернатив
имеет оценку по каждому из критериев.
Требуется: построить решающие правила на основе предпочтений ЛПР, позволяющие: выделить лучшую альтернативу; упорядочить альтернативы по качеству; отнести альтернативы к упорядоченным по качеству классам решений.
Задачи второй группы:
Дано:
группа из
критериев, предназначенных для оценки
любых возможных альтернатив; альтернативы
либо заданы частично, либо появляются
после построения решающего правила.
Требуется: на основании предпочтений ЛПР построить решающие правила, позволяющие: упорядочить по качеству все возможные альтернативы; отнести все возможные альтернативы к одному из нескольких (указанных ЛПР) классов решений.
Примером задач перовой группы является многокритериальная оценка имеющихся на рынке провайдеров сотовой связи, имеющихся в продаже товаров и т.д. Здесь все возможные альтернативы заданы, критерии определены ЛПР. От ЛПР требуется построить правило сравнения объектов, имеющих оценки по многим критериям.
Примером задач второй группы является построение правила принятия решений для фонда, распределяющего ресурсы на научные исследования. Проекты проведения исследований еще не поступили, но критерии оценки и решающее правило должны быть определены заранее. Критерии и решающее правило определяет ЛПР.
По типу системы предпочтений эксперта G. Предпочтения могут формироваться одним лицом или коллективом, в зависимости от этого задачи принятия решений можно классифицировать на задачи индивидуального принятия решений и задачи коллективного принятия решений.
По мощности множества критериев выбора К. Множество критериев выбора может содержать один элемент или несколько. В соответствии с этим задачи принятия решений можно разделить на задачи со скалярным критерием и задачи с векторным критерием.
По обстановке, в которой принимается решение. Обстановку, в которой принимается решение можно подразделить на стабильную и экстремальную.
При принятии решений в стабильной обстановке ЛПР, как правило, имеет больше времени для сбора и анализа данных и оценки принимаемых решений.
Принятие решений в экстремальной ситуации характеризуется острым дефицитом времени и, в большинстве случаев, быстро меняющейся обстановкой. Эти два фактора сильно усложняют процесс принятия решений для ЛПР.