Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
диф. уравнения .doc
Скачиваний:
172
Добавлен:
04.06.2015
Размер:
807.94 Кб
Скачать

Линейные дифференциальные уравнения 1 порядка

Линейные дифференциальные уравнения это вида , гдеP(x), Q(x) – непрерывные функции.

и входят в уравнение линейно, т.е не перемножаются между собой.

Сделаем замену:

Приравняем скобку к 0

подставим

- дифференциальное уравнение с разделяющимися переменными.

константу интегрирования не прибавляем, т.к достаточно одного частного решения.

Выразим явно

Подставим в (*)

Выразим

Т.к , то проинтегрируем обе части последнего уравнения по х

Общее решение линейного уравнения:

- всегда получается в явном виде.

Пример:

1)

2)y(1)=2

Уравнения Бернулли

, где ;1

Решаются такие уравнения так же как и линейные

Замена

Явно

- дифференциальное уравнение с разделяющимися переменными.

выразим явно u и найдём общее решение

Примеры:

1)

Дифференциальные уравнения высших порядков

Определение: Дифференциальное уравнение порядка n называется уравнение вида:

уравнение вида: – называется уравнением разрешенным относительно старшей производной. Для такого уравнения справедлива теорема Коши.

Теорема Коши.

Если функция в (*) непрерывна вместе с частными производными:

в области содержащей значения

, то существует единственное решение дифференциального уравнения удовлетворяющее начальным условиям:

Замечание: для дифференциальных уравнений 2 порядка

начальные условия имеют вид:

Решить дифференциальное уравнение порядка n означает:

1)Найти общее решение (общий интеграл)

2)Найти частное решение (частный интеграл), удовлетворяющее заданным условиям.

Определение: Общим решением дифференциального уравнения 2 порядка

является функция , такая что:

1) при любых значениях с1 и с2 эта функция – решение.

2) каковы бы ни были начальные условия на области, в которой выполняется теорема Коши всегда можно подобрать значения с1 и с2 удовлетворяющие начальным условиям.

Определение: Частным решением дифференциального уравнения 2 порядка является решение, при конкретных значениях с1 и с2.

Замечание: общее решение дифференциального уравнения 2 порядка может быть получено в неявном виде:

Дифференциальные уравнения 2 порядка, допускающие понижение порядка

1) Уравнения вида:

уравнение решается двукратным интегрированием по переменной х.

Проинтегрируем 1 раз по х.

Проинтегрируем 2 раз по х

общее решение.

Замечание: для дифференциального уравнения порядка n: - интегрировать нужноn раз.

Примеры:

2) Дифференциальные уравнения не содержащие явно y.

- нет явно y

Замена

Подставим замену в дифференциальное уравнение, получим

получим дифференциальное уравнение 1 порядка.

Найдём решение этого уравнения:

сделаем обратную замену

проинтегрируем обе части по х- общее решение

Пример:

3) Дифференциальные уравнения 2 порядка не содержащие явно х.

- нет явно х.

Замена: у-новая переменная

- новая функция

- её производная

Подставим замену в исходное уравнение

получим дифференциальное уравнение 1 порядка:

- его решение

Сделаем обратную замену -

- дифференциальное уравнение с разделяющимися переменными. Разделим переменные:

; - общее решение (вид неявный)

Примеры:

1.

2.