
- •Часть I. Введение. Предмет клеточной биологии
- •Часть I. Введение. Предмет клеточной биологии
- •Глава 1. Клеточная теория
- •1. Клетка – элементарная единица живого
- •2. Клетка – единая система сопряженных функциональных единиц
- •3. Гомологичность клеток
- •4. Клетка от клетки
- •5. Клетки и многоклеточный организм
- •6. Тотипотентность клеток
- •Глава 2. Методы клеточной биологии
- •Световая микроскопия
- •Витальное (прижизненное) изучение клеток
- •Изучение фиксированных клеток
- •Электронная микроскопия
- •Контрастирование корпускулярных объектов
- •Ультрамикротомия
- •Фракционирование клеток
- •Часть II. Строение и химия клеточного ядра Глава 3. Центральная догма молекулярной биологии
- •Глава 4. Морфология ядерных структур Роль ядерных структур в жизнедеятельности клетки
- •Ядерные компоненты прокариот
- •Ядро эукариотических клеток
- •Эухроматин и гетерохроматин
- •Хромосомный цикл
- •Общая морфология митотических хромосом
- •Клеточный цикл эукариот
- •Эндорепродукция и полиплоидия
- •Глава 5. Структура и химия хроматина
- •Основные белки хроматина - гистоны
- •Нуклеосомы при репликации и транскрипции
- •Второй уровень компактизациии – 30 нм фибрилла
- •Негистоновые белки
- •Глава 6. Ядерный белковый матрикс Общий состав ядерного матрикса
- •Днк ядерного белкового матрикса
- •Четвертый – хромонемный уровень упаковки хроматина
- •Глава 7. Общая организация митотических хромосом
- •Часть III
- •Глава 8. Ядрышко – источник рибосом
- •Ядрышко во время митоза: периферический хромосомный материал
- •Глава 9. Нерибосомные продукты клеточного ядра Транскрипция нерибосмных генов
- •Морфология рнп-компонентов в ядре
- •Глава 10. Ядерная оболочка
- •Часть IV. Цитоплазма
- •Глава 11. Гиалоплазма и органеллы
- •Глава 12. Общие свойства биологических мембран
- •Глава 13. Плазматическая мембрана
- •Клеточная стенка (оболочка) растений
- •Глава 14. Вакуолярная система внутриклеточного транспорта
- •Глава 15. Аппарат (комплекс) Гольджи
- •Глава 16. Лизосомы
- •Глава 17. Гладкий ретикулум и другие мембранные вакуоли
- •Часть V. Цитоплазма: системы энергообеспечения клеток
- •Глава 18. Митохондрии – строение и функции
- •Глава 19. Пластиды
- •Часть VI. Цитоплазма: Опорно-двигательная система (цитоскелет)
- •Глава 20. Промежуточные филаменты
- •Глава 21.Микрофиламенты
- •Глава 21. Микротрубочки
- •Глава 23. Клеточный центр
- •Двигательный аппарат бактерий
- •Часть VII. Механизмы клеточного деления. Глава 24. Митотическое деление клеток. Общая организация митоза
- •Различные типы митоза эукариот
- •Центромеры и кинетохоры
- •Длительность фаз митоза
- •Глава 25. Мейоз
- •Глава 26. Регуляция клеточного цикла
- •Фактор стимуляции митоза
- •Циклины
- •Регуляция клеточного цикла у млекопитающих
- •Глава 27. Гибель клеток: некроз и апоптоз
- •Апоптоз
Нуклеосомы при репликации и транскрипции
Как же происходит образование нуклеосом при репликации ДНК, какова судьба нуклеосом в вилке репликации, как распределяются новые и старые нуклеосомы или их белки – все эти вопросы еще до конца не разрешены.
При электронномикроскопическом исследовании реплицирующегося хроматина было обнаружено, что обе новообразованные фибриллы содержат нуклеосомы.
Если учесть скорость синтеза ДНК эукариот (20 нм в секунду),то новые нуклеосомы при удвоении хромосомных фибрилл должны возникать со скоростью 3-4 сек. Такая высокая скорость образования нуклеосом связана с тем, что в момент синтеза ДНК существует уже пул синтезированных гистонов всех классов, готовых войти в состав нуклеосом. Гистоновые гены, относящиеся к фракции умеренно повторяющихся последовательностей ДНК, представлены в виде множественных копий для каждого гистона. Они активируются вместе с началом синтеза ДНК, поэтому по мере продвижения репликационной вилки, новые участки ДНК могут сразу взаимодействовать с новосинтезированными гистонами. Новосинтезированные гистоны и старые гистоны в составе предшествующих нуклеосом не смешиваются при образовании нуклеосом во время репликации ДНК. Вместо этого октамеры гистонов, присутствующие до репликации остаются интактными и переходят на дочерний дуплекс ДНК, в то время как новые гистоны собираются в совершенно новые кор-частицы на свободных от нуклеосом участках ДНК. Старые и новые октамеры гистонов распределяются между дочерними дуплексами ДНК случайным образом.
Что происходит со старыми нуклеосомами в вилке репликациии ДНК до конца не ясно. Согласно одной из гипотез, каждая из нуклеосом при подходе к ней репликативной вилки как бы расщепляется на две «полунуклеосомы», а нуклеосомная ДНК разворачивается, чтобы дать пройти этот участок ДНК-полимеразе. После этого новосинтезированная цепь ДНК связывается со свободными гистонами, которые есть в избытке в ядре, и образуются новые нуклеосомы на второй цепи ДНК.
Как уже упоминалось, для активно функционирующих зон хроматина характерно деконденсированное, диффузное,состояние. На этом свойстве хроматина основан один из методов получения фракций активного хроматина, когда с помощью центрифугирования удается осадить конденсированный хроматин из гомогенатов ядер, отделив его тем самым от диффузного хроматина, обладающего высокой транскрипционной активностью. Фракции активного хроматина обладают рядом характерных свойств: повышенной чувствительностью к нуклеазам, повышенным уровнем модификации гистонов (особенно ацетилированием гистона H1), повышенным содержанием некоторых негистоновых белков.
Биохимические данные показывают, что во время транскрипции часть нуклеосомнвх белков остается связанной с ДНК. Нуклеосомы как частицы видны на хроматиновых фибриллах как до места отхождения транскрипта, так и после него при редкой посадке РНК-полимеразы, фермента вдвое большего, чем нуклеосома. При частой посадке этого фермента (например при транскрипции рибосомных генов, или генов в других активных локусах), частицы РНК-полимеразы располагаются тесно друг к другу и между ними нуклеосомы не видны (рис. 101). Вероятнее всего нуклеосомные белки при прохождении РНК-полимеразы не теряют связи с ДНК, а сама ДНК в составе нуклеосомы разворачивается. Предлагаются два варианта изменения структуры нуклеосом при синтезе РНК. При одном их них нуклеосома «расщепляется» на две полу-нуклеосомы, а ДНК разворачивается; при другом – нуклеосома частично декомпактизируясь, сохраняет тетрамер H3-H4, а два димера H2A-H2B временно отходят, а затем, после прохождения РНК-полимеразы, возвращаются, при этом восстанавливается исходная нуклеосома.