Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
37
Добавлен:
03.06.2015
Размер:
177.66 Кб
Скачать

18.3. Режимы передачи сигналов кабельной линией [7,23]

В зависимости от величины нагрузки Zн на выходе линии различают три режима передачи сигналов:

1. Режим бегущей волны сигнала при Zн = . В этом согласованном режиме /=/=, входное сопротивление кабеля равно волновому сопротивлению = , отражения сигнала от концов линии отсутствуют и выражения 18.1.1-18.1.2 и 18.2.1 упрощаются:

=ехр(-), =ехр(-), = ехр(-). (18.3.1)

Коэффициент передачи сигнала можно представить в форме:

= e-(+j) = e- e-j = || e-j, (18.3.1')

|| = e-, e-j = e-j

Эти выражения показывают, почему коэффициенты  и  называют коэффициентами затухания  (уменьшение абсолютных значений напряжения или тока на выходе линии по отношению к входному сигналу) и фазового сдвига  (изменение угла векторов тока или напряжения на выходе линии относительно входного сигнала) при прохождении сигнала через единичный отрезок кабеля.

На практике коэффициент затухания амплитудных значений сигнала при передаче по кабелю обычно измеряют в логарифмических единицах отношения амплитуды сигнала на входе кабеля к амплитуде сигнала на его выходе в неперах на 1 км, т.е.:

ln(Uвх/Uвых) = ln(1/exp(-) = ,

при этом численные значения коэффициента затухания сигнала в неперах совпадают со значениями коэффициента  в относительных единицах.

Рис. 18.3.1. Передаточные характеристики кабелей.

На рис. 18.3.1 приведены графики модуля коэффициента передачи сигнала, вычисленные по (18.3.1) при разных значениях длины кабеля. Графики представляют собой передаточные амплитудно – частотные характеристики (АЧХ) идеальных кабелей, согласованных по нагрузке во всем частотном диапазоне.

Затухание сигналов в кабеле определяется потерями его энергии. Потери энергии в кабеле подразделяются на два вида: потери в активном сопротивлении кабеля R (нагревание токопроводящих проводников), и потери в изоляции кабеля, определяемые значением G ее проводимости. Проводимость G зависит от прямой утечки тока через диэлектрик и затрат энергии на его поляризацию:

G = (1/Rи) + Ctg(), (18.3.2)

где: Rи – омическое сопротивление изоляции постоянному току, С – емкость кабеля, tg() – угол диэлектрических потерь. Для современных изоляционных материалов значение угла диэлектрических потерь не превышает десятитысячных долей и начинает сказываться только на очень высоких частотах (десятки МГц). Изменение АЧХ в области низких и средних частот обусловлено, в основном, изменением соотношения сопротивлений R и Zн = и стабилизируется при частотах выше 10 кГц, где Zн =  Rв = const (рис.18.2.2).

Рис. 18.3.2. Фазовочастотные характеристики согласованных кабелей.

Что касается фазовочастотных характеристик (ФЧХ) кабелей, приведенных на рис. 18.3.2, то, как это следует из величины  (см. рис. 18.2.4), значение фазового угла = - увеличивается с увеличением частоты, а на частотах выше 20 кГц равно -, т.е. прямо пропорционально частоте и длине кабеля. Из выражения (18.3.1’) следует, что значения коэффициента сдвига фазы  в относительных единицах без учета знаков численно равны значениям угла сдвига фазы волны напряжения (тока) в радианах при прохождении через единичный отрезок кабеля. Соответственно, с учетом знаков,  = - в радианах. Отклонение от линейности (в сторону больших углов сдвига) наблюдается только на низких частотах (менее 20 кГц).

Режим согласованной нагрузки наиболее эффективен при передаче сигналов по кабелю. Однако в пассивных линиях связи обеспечить такой режим при передаче импульсных широкополосных сигналов практически невозможно без применения систем формирования специальной формы частотной зависимости выходного сопротивления генератора и входного сопротивления приемника, соответствующей волновому сопротивлению кабеля. Как правило, для решения данной проблемы используются альтернативные решения: применение частотно – зависимых корректоров формы сигналов на выходе кабеля или фильтров частичной деконволюции импульсного отклика кабеля (фильтры направленного сжатия формы импульсного отклика).

2. Режим стоячей волны устанавливается в кабеле при Zн = 0 (короткозамкнутая линия) или Zн =  (режим холостого хода). Эти режимы применяются при измерениях волнового сопротивления кабеля.

3. Режим несогласованной нагрузки при Zн. Как правило, сопротивление нагрузки представляет собой постоянную величину Zн  Rн, независимую или слабо зависимую от частоты сигнала. Но согласованность кабеля с нагрузкой является частотно-зависимой даже при Zн = Rв, что определяет зависимость от частоты и входного сопротивления кабеля. На рис. 18.3.3(А,В) приведены частотные зависимости модулей и фазовых углов входного сопротивления кабелей различной длины при сопротивлении нагрузки, равной характеристическому волновому сопротивлению.

Как следует из графиков, входное сопротивление для низкочастотного диапазона (менее 1-20 кГц в зависимости от длины кабеля) отличается по своей величине и характеру от диапазона выше 10-50 кГц, где оно практически постоянно и равно волновому сопротивлению кабеля. В диапазоне менее 1 кГц входное сопротивление выше волнового на величину, примерно равную сопротивлению жилы постоянному току, и также является преимущественно активным. Между этими двумя диапазонами выделяется переходная зона, где входное сопротивление имеет реактивную составляющую емкостного характера.

При Rн  Rв характер входного сопротивления кабеля и его фазового угла усложняется, что можно наглядно видеть на рис. 18.3.3(C,D, E, F). Из этих рисунков очевидно, что при невозможности согласования кабеля по всему частотному диапазону необходимо, по крайней мере, стремиться выполнить условие Rн = Rв.

Неполная согласованность кабеля с нагрузкой создает отраженные волны, которые достигают начала кабеля и при Zо снова отражается назад в кабель, что приводит к искажению сигналов. Условие Rо = Rв является оптимальным и для согласования источника сигнала с кабелем. Затухание линии при фиксированных значениях сопротивлений нагрузки Rн и источника сигнала Rо называют рабочим затуханием кабеля и вычисляют по формуле:

р =  + ++, (18.3.3)

где первый член  в правой части уравнения – собственное затухание кабеля, второй и третий члены – дополнительное затухание вследствие неполного согласования с нагрузкой и с генератором, а последний член – влияние многократных отражений от концов кабеля.

Рис. 18.3.3. Частотные характеристики входного сопротивления кабелей

в зависимости от длины кабеля и значения сопротивления нагрузки.

При постоянных сопротивлениях источника сигнала и нагрузки, равных волновому сопротивлению, кабель остается существенно рассогласован на низких частотах, при этом километрический коэффициент рабочего затухания, вычисленный по (18.3.3) с приведением к 1 км, на низких частотах зависит от длины кабеля, что видно на рис. 18.3.4(A). Это объясняется тем, что при больших коэффициентах отражения электромагнитных волн от концов кабеля и их многократной пульсации по кабелю общие потери энергии на кабеле существенно зависят от его длины. Этот факт необходимо учитывать при использовании наземных приборов с коррекцией частотных искажений сигнала.

На рис. 18.3.4(В,С) дополнительно приведены графики частотной зависимости километрического коэффициента рабочего затухания р, вычисленные по (18.3.3) при Zo = Zв и разных значениях нагрузки кабеля по отношению к его номинальному волновому сопротивлению (Zв на высоких частотах). Как следует из графиков, при рассогласовании кабеля с нагрузкой затухание сигнала на частотах более 50 кГц увеличивается, в основном, за счет отражения сигнала от нагрузки, причем в тем большей степени, чем меньше длина кабеля (и, соответственно, больше абсолютная доля отраженной энергии сигнала и ее поглощение в кабеле). Характер изменения затухания на частотах ниже 50 кГц еще более сложен и зависит как от знака изменения нагрузки относительно волнового сопротивления, так и от длины кабеля, причем при Rн < Rв затухание увеличивается, а при Rн < Rв уменьшается для кабелей большой длины. Аналогичная картина наблюдается и при изменении сопротивления генератора относительно номинального волнового при постоянном сопротивлении нагрузки.

Рис. 18.3.4. Частотные функции рабочих километрических коэффициентов затухания

сигнала в зависимости от длины кабеля и согласования с нагрузкой

Таким образом, при сопротивлении нагрузки, близкой к номинальному волновому сопротивлению, километрический коэффициент затухания имеет два разных уровня с переходной границей в области средних частот. Высокочастотный уровень достаточно слабо зависит от длины кабеля и сопротивлений нагрузки и генератора, а низкочастотный уровень может существенно изменяться при изменении сопротивления нагрузки или генератора. Это позволяет использовать режим согласованной с номинальным волновым сопротивлением нагрузки кабеля в качестве основного режима передачи сигналов по кабелю, при этом небольшим направленным рассогласованием кабеля с нагрузкой или генератором коэффициент затухания сигнала может быть сделан практически равномерным по всему частотному диапазону. Вместе с тем графики еще раз свидетельствуют о целесообразности передачи информации сигналами, имеющими минимальную энергию в области низких частот (с нулевым средним значением амплитудной последовательности сигналов).

Рис. 18.3.5. Частотные функция скорости

распространения волн в кабеле.

Задержка сигналов в кабеле. Если коэффициент  определяет сдвиг по фазе колебания с частотой f на единице длины, то длина волны  в единицах длины кабеля будет равна длине кабеля, при которой сдвиг по фазе достигает величины 2, т.е.  = 2. С учетом этого скорость распространения электромагнитных волн в кабеле, график зависимости которой от частоты колебаний приведен на рис. 18.3.5, определяется выражением:

ff ,  (18.3.4)

Максимальная задержка сигнала соответствует низким частотам. На частотах выше 10 кГц при  =  значение скорости распространения волны стремится к постоянной величине .

На рис. 18.3.6 приведены функции временной задержки частотных составляющих (tз() = /))в кабеле.

Рис. 18.3.6. Функции временной задержки волн в кабеле.

В целом, из рассмотрения основных электрических характеристик кабеля следуют два, во многом очевидных для практиков вывода:

1. Оптимальная величина сопротивления нагрузки кабеля и выходного сопротивления источника сигналов должны быть равны характеристическому сопротивлению кабеля.

2. Энергия сигналов должна быть минимальной в области низких частот.