Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Baranov.Introduction to Physics Of Ultra Cold Gases.pdf
Скачиваний:
20
Добавлен:
27.08.2013
Размер:
586.56 Кб
Скачать

1.4. BASICS OF SECOND QUANTIZATION

11

A general wave function can be written as a linear combination of the above functions

y

(b,f)

( ~ri ) = åpi

(b,f)

):

 

 

Cfpigyfpig( ri

(1.30)

 

 

f g

 

 

 

Only the occupations ni of each single particle state are required. With this information the wave function can be reconstructed. Therefore, a simplified description can be expected if the change from ri representation to ni representation is made.

1.4Basics of second quantization

We have states n1, n2, ::: with n1, n2, ::: particles. Each state is described by jn1;n2;:::i with the special state vacuum j0;0;:::i j0i. The following operators are relevant to these states:

an is the annihilation operator: nn ! nn 1 (Note that an j0i = 0 for any n)

an is the creation operator: nn ! nn + 1

Note that these operators annihilate or create particles in a given quantum state unlike the operators in first quantization which change the quantum number of one quantum state.

As was already mentioned above, there are two types of particles.

1.4.1Bosons

In this case we have the following commutation relations:

hi

an ;an

0 = dnn0

(1.31)

hi

an ;an0

= an;an

0 = 0

(1.32)

Because states with different n are independent, we consider only one state to understand the consequences of the above generator algebras.

The actions of the operators on the states are as follows:

aj0i = 0

an j0in=1anjni

(1.33)

h0jan = hnjan

aj0i = an 1jn 1i

(1.34)

12 CHAPTER 1. GENERAL ASPECTS

All states are orthonormal, i.e. hnjmi = dnm. The an can be chosen real, as a phase can be absorbed into the definition of the states. It follows

a12 = 1

 

 

 

 

 

 

and

 

 

j0i = h0ja

 

n 11 + a

a a

j0i

(1.35)

an = h0ja

 

 

a

 

 

(1.36)

2

 

 

 

 

n

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

n

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

1

 

 

= an2 1 + h0jan 1aa aj0i

 

 

 

 

n

 

 

1

j i

 

 

 

(1.37)

=

an 1 + h j

 

 

 

 

 

 

 

 

 

2

 

 

 

n

 

 

2

 

 

 

 

 

 

 

(1.38)

 

2

 

 

 

 

 

 

 

0 an

 

1a1 + aa

 

a

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

2

 

 

 

 

 

h j

 

 

n 1

 

n

 

 

 

 

j i

 

 

 

 

 

 

 

 

 

= 2an2

 

 

1 +

0 an 1

 

a

 

 

a

a

 

 

 

 

0

 

 

 

 

 

 

 

 

(1.39)

=

n

an 1 + h

 

j

 

 

 

a

 

a=j

0i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.40)

 

 

 

 

 

 

 

 

 

 

 

 

 

0 a

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= n!:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|{z}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.41)

Therefore each state can be written as

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

1

a

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jni

 

 

p

 

 

j0i

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.42)

n!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p(n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ajni

 

 

=

p

 

a

(a)nj0i =

p

 

+ 1)!jn + 1i

(1.43)

n!

n!

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.44)

 

 

 

 

 

= n + 1jn + 1i:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analogously we calculate

 

 

j0i = pn! (1 + a

a) a

 

 

 

 

 

j0i

 

 

 

 

ajni = pn! a a

 

 

 

 

 

 

 

 

(1.45)

1

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j0i

 

 

 

 

= pn!

 

(n 1)!jn 1i+ aa

a

 

 

 

 

 

 

 

 

 

 

(1.46)

 

1

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

2

 

 

=

p

 

 

 

(n 1)!jn 1i+ a(1 + a

 

a) a

 

j0i

(1.47)

n!

 

 

1

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

2

 

 

 

 

 

a

 

 

 

n

2

 

 

 

 

= pn!

2

 

 

 

(n 1)!jn 1i+

 

 

a

 

 

 

 

 

 

 

j0i

(1.48)

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

np

 

jn 1i = p

 

jn 1i:

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.49)

p

 

(n 1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

n!

 

 

 

 

 

 

 

 

 

 

 

 

 

Defining the particle number operator ˆn = aa we get

 

 

 

 

 

 

 

 

 

 

 

 

n n

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

p

 

n

 

 

1i

=

p

 

p

 

n

 

 

 

n n

(1.50)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

n

n

 

 

 

 

ˆ j i = a

 

aj i = a

 

 

 

 

j

 

 

 

 

 

 

 

 

 

 

j i =

 

j

i;

and the energy operator is therefore en = eaa.

1.4. BASICS OF SECOND QUANTIZATION

13

1.4.2Fermions

The operators an and an obey anticommutation relations

fan ;an

0g = dnn0

 

 

(1.51)

fan ;an

0g = fan;an

0g = 0

PAULI Principle:

(1.52)

Again, considering for simplicity the one state problem, it is easy to see that the occupation number N can only be 0 (the vacuum state) or 1 (PAULI principle):

aj0i = 0

 

 

aj1i = j0i aj0i = j1i with

(1.53)

ˆ

a

a

(1.54)

H = ea

nˆ = a

1.4.3Single particle operator

We can now define the field operators as

 

 

ˆ

åan jn (~r)

(1.55)

y(~r) =

 

n

 

yˆ (~r) = åanjn (~r):

(1.56)

 

n

 

Here n runs over all states and the for a particle to be in the state n. relations:

jn (~r) are the amplitudes (probabilities) at ~r They have the following (anti-)commutation

h

 

i

nn0

 

h

0i

yˆ (~r);yˆ (~r 0)

 

=

åjn (~r)jn0(~r 0)

an ;an

 

 

 

=

å

j

(~r)j (~r 0) = d(~r ~r 0)

 

 

 

 

n

n

 

yˆ

(~r);yˆ (~r 0)

 

n

 

 

 

= hyˆ (~r);yˆ (~r 0)i = 0

 

 

 

 

 

 

 

 

(1.57)

(1.58)

(1.59)

By using the field operators yˆ (~r) and yˆ (~r) various quantum mechanical operators can easily be transformed from the space representation (~r-representation) into the occupation number representation (n-representation).

For a Single particle operator

 

 

 

ˆ

N

 

 

 

 

= å f (~ri)

(1.60)

 

 

 

F1

 

 

 

 

i=1

 

(Examples:

 

 

 

 

 

n(~r) = åd(~r ~ri) density

(1.61)

i

 

 

4i +U (~ri) Single particle HAMILTONian)

 

 

2

 

Hˆ 1 = åi

~

(1.62)

2m

14

 

CHAPTER 1.

GENERAL ASPECTS

we have

 

nn0h

 

j

j

i

 

 

 

 

Z

 

 

 

0

 

 

Fˆ1 =

d3r yˆ (~r) f (~r)yˆ (~r) = å n

0

 

f

n

an

 

an

(1.63)

hn0jf jni = Z

d3r0 jn

0(~r 0) f (~r)jn (~r 0):

 

 

 

 

 

 

 

(1.64)

Each term in the sum on the r.h.s. of eq. (1.63) describes the transition of a particle from a state n to a state n0 with amplitude hn0jf jni.

Examples:

 

ˆ

ˆ

nˆ (~r) = y

(~r)y(~r)

ˆ

 

N

= åan an

 

n

 

Hˆ 1

= d3r åan0jn0(~r)!

 

Z

n0

 

~2

4

 

n

 

2m

 

 

 

 

+U (~r)

åan jn (~r)

 

Z

n0

0

! n

 

 

=

d3r åan

 

jn0(~r)

åan en jn (~r)

 

 

n

 

 

Z

d3r jn0(~r)jn (~r) = dnn

0

= åen anan

 

with

 

(1.65)

(1.66)

(1.67)

(1.68)

(1.69)

1.4.4 Two particle operator

 

ˆ

 

 

 

 

(1.70)

 

Fi = å f (~r j;~rk)

 

 

j6=k

 

 

 

Example:

 

 

 

 

 

 

 

ˆ

1

 

 

 

 

 

Hint =

2 åUI

(~ri

~r j)

(1.71)

 

 

 

i6= j

 

 

 

Now we have

 

 

 

 

 

 

Fˆ2 = Z

d3rd3r0 yˆ (~r)yˆ (~r 0) f (~;~r r 0)yˆ (~r 0)yˆ (~r)

(1.72)

and the the interaction part of the HAMILTONian as example:

Hˆ

=

1

 

å

n

0 n

0 U n

n

2i

a

a

a

a

with

(1.73)

 

 

int

2

n1

h

1

2j Ij 1

 

n10

n20

 

n2

n1

 

 

 

 

;n2;n10 ;n20

 

 

 

 

 

 

 

 

 

 

 

Z

n

0 n0 U

n

n

1i

=

d3rd3r0 j

 

(~r)j

 

(~r

0)U (~r

~r 0)j

(~r 0)j

(~r)

(1.74)

h

1 2j Ij

2

 

 

 

n10

 

n20

 

I

 

n2

n1

 

1.4. BASICS OF SECOND QUANTIZATION

15

Figure 1.1: Interchange of quantum state

This term describes the scattering of two particles in initial states n1 and n2 into final states n10 and n20 with an amplitude hn10 n20 jUIjn2n1i.

We can now write down the complete HAMILTONoperator in the form:

Hˆ

=

å

e

a

a

n

+

1

å

n

0 n0 U n

n

1i

a

a

a

a

with

(1.75)

 

 

 

n

n

 

2

h

1 2j Ij 2

 

n10

n20

 

n2

n1

 

 

 

n

 

 

 

 

 

 

n1;n2;n10 ;n20

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.76)

N =

åan an

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

The constraint of fixed N introduces technical difficulties. introduce the chemical potential m

ˆ ! ˆ ˆ

H H mN

To avoid them, we

(1.77)

and keep a fixed ¯n. The system can be thought as connected with a reservoir and the chemical potential governs the exchange process. In our calculations we have to replace

en ! en m

to take this extra term into account.

If we consider the homogeneous case then n becomes ~p and

 

i ~p ~r

 

 

Z

d3 p

jn = e ~

n

!

 

 

(2p~)

å

 

V

3

 

en =

p2

 

hjn jjn0i ! (2p~)3d(~p ~p0):

2m

(1.78)

(1.79)

(1.80)

For the time being we set the volume V 1. Since we consider the homogeneous case ~p is conserved therefore

~p

0~p

0

U ~p

~p

2i

= (2p

~

)3d(~p

1

+~p

2

~p

0

 

~p

0)g:

(1.81)

h

1

2

j Ij 1

 

 

 

 

 

1

 

2

 

16

CHAPTER 1. GENERAL ASPECTS

To calculate g we have to switch carefully to the center of mass reference system and use relative coordinates. Then g turns out to be the FOURIER transform of

UI(~r):

Z

g = d3rUI(~r)ei(~p1 ~p2)~~r : (1.82)

But quantum degenerate cold gases, eqn. (1.1)-(1.3), imply collisions of particles with low momenta (i.e. slow particles, r0 p ~). From scattering theory we know that in this regime collisions are characterized by only one parameter, the scattering length a. Therefore, in the BORN approximation,

g =

4p~2

(1.83)

a:

m

As a result, the HAMILTONian takes the form

 

 

e~p m apap +

1

 

 

Hˆ

= å~p

2 g p1;på2;p10 ;p20

ap10 ap20 ap2 ap1 :

(1.84)

Figure 1.2: Plot of inter atomic potential

Соседние файлы в предмете Физика конденсированного тела