Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Baranov.Introduction to Physics Of Ultra Cold Gases.pdf
Скачиваний:
21
Добавлен:
27.08.2013
Размер:
586.56 Кб
Скачать

1.3. MANY PARTICLES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rotationally invariant harmonic trap

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U (~r) =

(wr2r2 + wz2z2)

r = px2 + y2

 

2

This leads to the solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

imf

jnz

(zˆ)

 

with

 

 

 

 

ynr mnz = jnr (r)e

 

 

 

 

 

 

ˆ

 

 

 

r

 

r

 

 

 

z

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r =

 

 

~

 

i

l

 

zˆ =

~

 

 

i l

 

 

 

 

q

 

 

 

r

 

 

q

 

 

 

 

z

 

 

mwr

 

 

 

 

 

 

 

 

 

 

 

 

mwz

 

 

9

(1.12)

(1.13)

(1.14)

jnz

 

 

 

1

e

zˆ2

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

Hnz (zˆ)

 

 

 

 

 

 

(1.15)

 

 

 

 

 

 

2

 

 

 

 

 

 

p

p

 

 

2nz nz!lz

 

 

 

 

 

 

n

 

 

 

 

 

 

jnr

 

 

 

 

r

 

 

 

 

m

 

 

2

)

(1.16)

 

 

 

 

 

 

 

 

 

 

= lr sp(nr + jmj)! rˆ jmje

2 Lnj rj(rˆ

 

 

 

1

 

 

 

 

n !

 

 

 

rˆ 2

 

 

 

 

 

enr mnz

= ~(wr (2nr + jmj+ 1) + wz(nz +

1

)):

(1.17)

 

2

Here H are the HERMITE polynomials and L the LAGUERRE polynomials.

Isotropic harmonic trap

 

 

 

 

 

 

 

 

 

mw2

 

 

U (~r) =

 

r2

 

(1.18)

2

 

 

 

 

 

 

 

 

 

The dimensionless solutions are

 

 

 

 

 

 

 

 

ynlm = jnl (~r)Ylm(~r)

rˆ =

r

rl0

(1.19)

 

 

 

 

q

 

 

 

 

~

 

 

 

 

 

mw

 

 

nl

 

l 2

s

Γ(n + l +

23 )

 

 

 

 

j

 

=

1

 

 

2n!

 

 

rˆl e

rˆ2

Lnl+ 21 (rˆ

2)

 

3

 

 

 

 

 

 

 

2

 

 

0

 

 

 

3

 

 

 

 

 

 

 

enlm

= ~w(2n + l +

):

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

Here Γ is the EULER gamma (generalized faculty) function.

1.3Many particles

The HAMILTONian is

ˆ

N

 

~2

 

 

1

N

 

(~ri

 

i=1

2m 4

2 i= j=1

 

H = å

 

 

 

i +U (~ri) +

 

å

UI

~r j):

 

 

 

 

 

 

 

6

 

 

 

(1.20)

(1.21)

(1.22)

10

CHAPTER 1. GENERAL ASPECTS

The simplest case is the free gas, where UI 0. If we label possible single particle states with n and if each state is occupied by nn particles than the total number of particles N is

ånn = N:

(1.23)

n

 

A simple ansatz for the wave function is a product of single particle wave functions:

Ψn1;n2;:::(~r1;~r2;:::;~rn) = ji1 (~r1)ji2 (~r2) jin (~rn)

(1.24)

en1;n2;::: = n1e1 + n2e2 + :::

(1.25)

This solution satisfies the S CHRÖDINGER equation (1.5) but, in general, it fails to describe the physics of N identical particles1, because the wave function must change in a specific way under permutations P of any two identical particles. Since jyj2 is an observable which is unaffected by the permutation, this leaves two possibilities:

Py = y

(1.26)

1."+": Bosons

The wave function has to be symmetrized over all possible permutations which exchange particles in different quantum states. This subset of the

permutation group is denoted by p0:

yn1;n2;::: = r

 

 

 

 

jn1 (~r1) jnn (~rn)

(1.27)

1

N! åp0

(b)

 

n

!n2!

 

 

2." ": Fermions

No two single particles may be in the same state n. Therefore the sum runs over all possible permutations:

(f)

1

 

åp

p

 

yn1;n2;::: =

p

 

 

( )

jn1 (~r1) jnn (~rn)

N!

 

Alternatively the wave function can be described by a determinant:

(f)

1

yn1;n2;::: = pN!

0jn2

(~r1) jn2

(~r2)

 

jn1

(~r1)

jn1

(~r2)

 

 

.

 

 

 

 

.

 

 

 

 

 

..

 

 

 

 

..

 

 

B

 

 

 

 

 

 

 

 

 

 

Bj

nn

(~r

1

) j

nn

(~r

2

)

B

 

 

 

 

 

 

@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1i.e. no further quantum numbers like color is present

:::

jn1 (~rn)

 

:::

jn2 (~rn)1

.

. .

.

 

 

..

 

 

 

 

C

 

 

 

C

 

 

 

C

 

 

 

A

 

 

 

 

:::

jnn (~rn)

(1.28)

(1.29)

Соседние файлы в предмете Физика конденсированного тела