
- •General aspects
- •Introduction
- •Single particle
- •General aspects
- •Traps
- •Many particles
- •Basics of second quantization
- •Bosons
- •Fermions
- •Single particle operator
- •Two particle operator
- •Bosons
- •Free Bose gas
- •General properties
- •BEC in lower dimensions
- •Trapped Bose gas
- •Parabolic trap
- •Weakly interacting Bose gas
- •BEC in an isotr. harmonic trap at T=0
- •Comparison of terms in GP
- •Thomas-Fermi-Regime
- •Fermions
- •Free Fermions
- •General properties
- •Pressure of degenerated Fermi gas
- •Excitations of Fermions at T=0
- •Trapped non-interacting Fermi gas at T=0
- •Weakly interacting Fermi gas
- •Ground state
- •Decay of excitations
- •Landau-Fermi-Liquid
- •Zero Sound
- •Bardeen-Cooper-Shieffer-Theory
- •General treatment
- •BCS Hamiltonian
- •General energy-momentum relation
- •Calculation for section 3.3.1
- •Lifetime and Fermis Golden Rule
- •Bibliography

1.3. MANY PARTICLES |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rotationally invariant harmonic trap |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
U (~r) = |
(wr2r2 + wz2z2) |
r = px2 + y2 |
||||||||||||||||||||
|
||||||||||||||||||||||
2 |
||||||||||||||||||||||
This leads to the solution |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ˆ |
imf |
jnz |
(zˆ) |
|
with |
|
|
|
|
||||||||
ynr mnz = jnr (r)e |
|
|
|
|
|
|
||||||||||||||||
ˆ |
|
|
|
r |
|
r |
|
|
|
z |
|
z |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
r = |
|
|
~ |
|
i |
l |
|
zˆ = |
~ |
|
|
i l |
|
|
||||||||
|
|
q |
|
|
|
r |
|
|
q |
|
|
|
|
z |
||||||||
|
|
mwr |
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
mwz |
|
|
9
(1.12)
(1.13)
(1.14)
jnz |
|
|
|
1 |
e |
zˆ2 |
|
|
|
|
|
|
|
|||||
= |
|
|
|
|
|
|
|
|
Hnz (zˆ) |
|
|
|
|
|
|
(1.15) |
||
|
|
|
|
|
|
2 |
|
|
|
|
|
|
||||||
p |
p |
|
|
2nz nz!lz |
|
|
|
|
|
|
||||||||
n |
|
|
|
|
|
|
||||||||||||
jnr |
|
|
|
|
r |
|
|
|
|
m |
|
|
2 |
) |
(1.16) |
|||
|
|
|
|
|
|
|
|
|
|
|||||||||
= lr sp(nr + jmj)! rˆ jmje |
2 Lnj rj(rˆ |
|
||||||||||||||||
|
|
1 |
|
|
|
|
n ! |
|
|
|
rˆ 2 |
|
|
|
|
|
||
enr mnz |
= ~(wr (2nr + jmj+ 1) + wz(nz + |
1 |
)): |
(1.17) |
||||||||||||||
|
||||||||||||||||||
2 |
Here H are the HERMITE polynomials and L the LAGUERRE polynomials.
Isotropic harmonic trap |
|
|
|
|
|
|
|
|
|
mw2 |
|
|
|||||
U (~r) = |
|
r2 |
|
(1.18) |
||||
2 |
|
|||||||
|
|
|
|
|
|
|
|
|
The dimensionless solutions are |
|
|
|
|
|
|
|
|
ynlm = jnl (~r)Ylm(~r) |
rˆ = |
r |
rl0 |
(1.19) |
||||
|
|
|
|
|||||
q |
|
|
|
|||||
|
~ |
|
||||||
|
|
|
|
mw |
|
|
nl |
|
l 2 |
s |
Γ(n + l + |
23 ) |
|
|
|
|
||||
j |
|
= |
1 |
|
|
2n! |
|
|
rˆl e |
rˆ2 |
Lnl+ 21 (rˆ |
2) |
||
|
3 |
|
|
|
|
|
|
|
2 |
|||||
|
|
0 |
|
|
|
3 |
|
|
|
|
|
|
|
|
enlm |
= ~w(2n + l + |
): |
|
|||||||||||
|
|
|||||||||||||
|
|
|
|
2 |
|
|
|
|
|
|
|
Here Γ is the EULER gamma (generalized faculty) function.
1.3Many particles
The HAMILTONian is
ˆ |
N |
|
~2 |
|
|
1 |
N |
|
(~ri |
|
i=1 |
2m 4 |
2 i= j=1 |
|
|||||||
H = å |
|
|
|
i +U (~ri) + |
|
å |
UI |
~r j): |
||
|
|
|
|
|
|
|
6 |
|
|
|
(1.20)
(1.21)
(1.22)

10 |
CHAPTER 1. GENERAL ASPECTS |
The simplest case is the free gas, where UI 0. If we label possible single particle states with n and if each state is occupied by nn particles than the total number of particles N is
ånn = N: |
(1.23) |
n |
|
A simple ansatz for the wave function is a product of single particle wave functions:
Ψn1;n2;:::(~r1;~r2;:::;~rn) = ji1 (~r1)ji2 (~r2) jin (~rn) |
(1.24) |
en1;n2;::: = n1e1 + n2e2 + ::: |
(1.25) |
This solution satisfies the S CHRÖDINGER equation (1.5) but, in general, it fails to describe the physics of N identical particles1, because the wave function must change in a specific way under permutations P of any two identical particles. Since jyj2 is an observable which is unaffected by the permutation, this leaves two possibilities:
Py = y |
(1.26) |
1."+": Bosons
The wave function has to be symmetrized over all possible permutations which exchange particles in different quantum states. This subset of the
permutation group is denoted by p0:
yn1;n2;::: = r |
|
|
|
|
jn1 (~r1) jnn (~rn) |
(1.27) |
1 |
N! åp0 |
|||||
(b) |
|
n |
!n2! |
|
|
2." ": Fermions
No two single particles may be in the same state n. Therefore the sum runs over all possible permutations:
(f) |
1 |
|
åp |
p |
|
|
yn1;n2;::: = |
p |
|
|
( ) |
jn1 (~r1) jnn (~rn) |
|
N! |
|
Alternatively the wave function can be described by a determinant:
(f) |
1 |
yn1;n2;::: = pN!
0jn2 |
(~r1) jn2 |
(~r2) |
||||||||
|
jn1 |
(~r1) |
jn1 |
(~r2) |
||||||
|
|
. |
|
|
|
|
. |
|
|
|
|
|
|
.. |
|
|
|
|
.. |
|
|
B |
|
|
|
|
|
|
|
|
|
|
Bj |
nn |
(~r |
1 |
) j |
nn |
(~r |
2 |
) |
||
B |
|
|
|
|
|
|
||||
@ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1i.e. no further quantum numbers like color is present
::: |
jn1 (~rn) |
|
|
::: |
jn2 (~rn)1 |
||
. |
. . |
. |
|
|
.. |
|
|
|
|
|
C |
|
|
|
C |
|
|
|
C |
|
|
|
A |
|
|
|
|
::: |
jnn (~rn) |
(1.28)
(1.29)