
- •Contents
- •Preface to second edition
- •1 Introduction
- •1.2 Applying technology in an environment
- •1.3 The human role in systems
- •1.4 Ethical issues
- •1.7 Common practice and good practice
- •1.8 Bugs and emergent phenomena
- •1.10 Knowledge is a jigsaw puzzle
- •1.11 To the student
- •1.12 Some road-maps
- •2 System components
- •2.2 Handling hardware
- •2.3 Operating systems
- •2.4 Filesystems
- •2.5 Processes and job control
- •2.6 Networks
- •2.7 IPv4 networks
- •2.8 Address space in IPv4
- •2.9 IPv6 networks
- •3 Networked communities
- •3.1 Communities and enterprises
- •3.2 Policy blueprints
- •3.4 User behavior: socio-anthropology
- •3.5 Clients, servers and delegation
- •3.6 Host identities and name services
- •3.8 Local network orientation and analysis
- •4 Host management
- •4.1 Global view, local action
- •4.2 Physical considerations of server room
- •4.3 Computer startup and shutdown
- •4.5 Installing a Unix disk
- •4.6 Installation of the operating system
- •4.7 Software installation
- •4.8 Kernel customization
- •5 User management
- •5.1 Issues
- •5.2 User registration
- •5.3 Account policy
- •5.4 Login environment
- •5.5 User support services
- •5.6 Controlling user resources
- •5.7 Online user services
- •5.9 Ethical conduct of administrators and users
- •5.10 Computer usage policy
- •6 Models of network and system administration
- •6.5 Creating infrastructure
- •6.7 Competition, immunity and convergence
- •6.8 Policy and configuration automation
- •7.2 Methods: controlling causes and symptoms
- •7.4 Declarative languages
- •7.6 Common assumptions: clock synchronization
- •7.7 Human–computer job scheduling
- •7.9 Preventative host maintenance
- •7.10 SNMP tools
- •7.11 Cfengine
- •8 Diagnostics, fault and change management
- •8.1 Fault tolerance and propagation
- •8.2 Networks and small worlds
- •8.3 Causality and dependency
- •8.4 Defining the system
- •8.5 Faults
- •8.6 Cause trees
- •8.7 Probabilistic fault trees
- •8.9 Game-theoretical strategy selection
- •8.10 Monitoring
- •8.12 Principles of quality assurance
- •9 Application-level services
- •9.1 Application-level services
- •9.2 Proxies and agents
- •9.3 Installing a new service
- •9.4 Summoning daemons
- •9.5 Setting up the DNS nameservice
- •9.7 E-mail configuration
- •9.8 OpenLDAP directory service
- •9.10 Samba
- •9.11 The printer service
- •9.12 Java web and enterprise services
- •10 Network-level services
- •10.1 The Internet
- •10.2 A recap of networking concepts
- •10.3 Getting traffic to its destination
- •10.4 Alternative network transport technologies
- •10.5 Alternative network connection technologies
- •10.6 IP routing and forwarding
- •10.7 Multi-Protocol Label Switching (MPLS)
- •10.8 Quality of Service
- •10.9 Competition or cooperation for service?
- •10.10 Service Level Agreements
- •11 Principles of security
- •11.1 Four independent issues
- •11.2 Physical security
- •11.3 Trust relationships
- •11.7 Preventing and minimizing failure modes
- •12 Security implementation
- •12.2 The recovery plan
- •12.3 Data integrity and protection
- •12.5 Analyzing network security
- •12.6 VPNs: secure shell and FreeS/WAN
- •12.7 Role-based security and capabilities
- •12.8 WWW security
- •12.9 IPSec – secure IP
- •12.10 Ordered access control and policy conflicts
- •12.11 IP filtering for firewalls
- •12.12 Firewalls
- •12.13 Intrusion detection and forensics
- •13 Analytical system administration
- •13.1 Science vs technology
- •13.2 Studying complex systems
- •13.3 The purpose of observation
- •13.5 Evaluating a hierarchical system
- •13.6 Deterministic and stochastic behavior
- •13.7 Observational errors
- •13.8 Strategic analyses
- •13.9 Summary
- •14 Summary and outlook
- •14.3 Pervasive computing
- •B.1 Make
- •B.2 Perl
- •Bibliography
- •Index
168 |
CHAPTER 5. USER MANAGEMENT |
5.7 Online user services
There are many instances of using the World Wide Web to provide online registration of data, for instance, as colleges and universities modernize, they are increasingly looking for ways to make use of information technology to simplify the administration of examinations. This presents a somewhat different set of logistical problems than with traditional examinations. It requires users to be managed in a potentially different way for part of the time – during the examination.
In this section, we shall consider the specific example of online examinations, for the sake of concreteness. The idea can be generalized or adapted to apply to other services (see exercises).
We are interested in achieving a number of goals with an online system:
•To cope with large numbers of users (e.g. students),
•To allow more general examination methods (continuous assessment etc.),
•To prevent unnecessary copying, or ‘cheating’, amongst the students,
•To move the bulk of the burden from grading work to pedagogical design,
•To provide an online (distributed) solution, which solves the most pressing security problems adequately.
These are significant challenges at present, since current online technologies are not well standardized in a way that is ideally suited to this task. Until some dedicated software is available for this purpose, it is a task for system administration to make interim solutions possible.
5.7.1Security perspective
Security is the discipline of protecting interests and things of value. Student evaluation is a security problem at several levels. Security spans a number of issues: reliability, integrity, privacy, authenticity and – the heart of every security problem – how far one is willing to trust the parts of a system.
Figure 5.1 shows the beginnings of a (potentially very large) ‘cause tree’ for traditional examination failure; it illustrates a point which many teachers take for granted about the evaluation of students – namely, that any system in which points are awarded, or students receive some kind of reward (payoff), is subject to attack by malicious or incidental factors. Let us mention a few of the ways in which the tenets of security apply to the evaluation process.
•Trust: The fundamental issue in any security system is where one places one’s trust; it is about deciding what is an acceptable risk. For example, staff might trust students never to cheat. If that is the case, security is very simple. On the other hand, staff might only trust students not to cheat in a supervised room (with an exam invigilator present). Conversely, students might not trust the course teacher to grade their papers correctly, or to give them a fair hearing; in that case, a quality control protocol can be implemented to offer a level of security to the students.

5.7. ONLINE USER SERVICES |
169 |
Fail exam
Exam correct |
Exam incorrect |
Grading error |
Careless Teacher Incompetence Bad teacher Bad student error dislikes
student
Hangover Just bad Did no work Just bad
Figure 5.1: A partial cause tree for examination failure.
In each case, what we are willing to trust guides the security measures which need to be implemented. At no point is any system infallible. If one assumes that students and staff are hostile partners, the worst case would be that both sides would engage in an arms race, each trying to outsmart the other. In practice, only a small fraction of staff and students behaves in this manner, but nevertheless, this is a problem which must be taken seriously, at some level.
•Reliability: The reliability of the examination procedure must be secured against both malicious exploitation and accidental error. In an alternative evaluation scheme, it is natural to eliminate humans from the grading process as far as possible. If a machine can be made to perform the grading, then clearly the only source of error would be a systematic error, perhaps from an error in programming of the system itself. Such an error would not prejudice any one student, and could be corrected in time.
•Integrity: Integrity concerns the ability to transmit information, or intent, without alteration or error. Integrity of evaluation information applies both to the problems posed to students and in the collection of their replies. With Web-based technologies, this can be a problem unless students are using standardized browsers and operating systems. The disturbing lack of standardization in browser technology means that not all data can be rendered in any browser. Moreover, early Netscape browsers crash often, and Internet Explorer fails to show HTTPS secured pages a significant percentage of the time with an unspecific ‘Page cannot be shown’ error.
•Authenticity and identity: Students need to trust the authenticity of the exam paper, or the problems they are to answer. It would be unacceptable for a malicious party to replace the actual exam with a fake exam, or an exam to which the students already had the written solutions. Similarly, the examiners need to know that the student whose name is on the resulting work, actually did that work. Copying from one another without learning is one way in which students can attack examination and evaluation systems, and undermine the purpose of the educational establishment.
170 |
CHAPTER 5. USER MANAGEMENT |
Correctly identifying the author of an examination paper is a subtle task. In the security sense, one can visually inspect the student ID of a student who shows up for an examination (though ID can be forged). Similarly, one can forge electronic credentials relatively easily. In spite of the dangers to themselves, students regularly swap passwords and loan accounts to their classmates. Thus, when an assignment is submitted without physical supervision (e.g. electronically), there is no guarantee that the person whose name is registered by the receiver is the author of the work. In a written examination, students regularly memorize passages and methods written by others – it just requires a little more concentration to achieve.
The act of confirming one’s identity by use of a secret password or other means is called authentication.
•Privacy: Finally, can the process of evaluation be conducted with sufficient respect for individual privacy? The teacher’s privacy is needed to prevent students from cheating by finding the solutions or by gaining knowledge of the problems in advance, and the student’s privacy is needed to prevent their identities from compromising the objectivity (reliability) of the process.
Discussing student evaluation in terms of information security is perhaps an unusual point of view, but it is not one to be dismissed lightly. The validity of the university’s conclusions about a student’s performance is precisely what is at stake, both for its reputation and for society at large.
5.7.2Reconfiguring hosts for electronic exams
Imperial College in London has devised an administrative scheme called Lexis for conducting examinations using specially secured computers [330]. The college chose the GNU/Linux operating system for this purpose and used a separate run-level to configure hosts at startup in a secure environment.
Lexis was designed specifically with programming examinations in mind. It seeks to provide a familiar lab-like environment during exams, with all resources necessary to complete the exam, including a secure environment and means of collecting exam answers. Students should have no access to unauthorized data, no access to other users on the network, and not be distracted by other users or signals from the network.
A similar approach has been examined at Oslo University College, using cfengine to reconfigure computers temporarily.
5.7.3User identification
At a university, students come and go and login names can be reused over time. This has potential consequences for the long-term storage and identification of student results online. The use of student numbers or personal identification numbers has been used here in Oslo, since these are unique even over long periods of time.
5.8. USER WELL-BEING |
171 |
How should students and their answers be identified during the examination? The use of usernames and passwords to authenticate users seemed to be the best compromise. The use of digital signatures might also be considered; however, digital signing is deemed too complicated for non-computer science users – even computer science students who were studying security found signatures to be confusing. Also, there is a significant administrative overhead involved in setting up and maintaining signatures in a student environment, where login names and accounts are frequently appearing and disappearing.
The issue of confirming student identity online is called authentication. It works by challenging the user to provide knowledge of some password or private secret which they would not normally divulge to anyone else. This is the most difficult and pressing issue in online services. Students are not afraid to swap passwords to college accounts, because they often have private accounts elsewhere (Hotmail or home accounts etc.), and thus regard their college accounts as ‘disposable’. As long as students are not afraid to lend their secrets to others, there will be no unique way of identifying them, and thus of being certain that they are responsible for their own grades.
5.8 User well-being
Because computer systems are communities, populated by real people, there are issues in system administration which are directly connected with users’ wellbeing. Contented users work well and treat the system well; disgruntled users cause trouble for the system and for their neighbors. This is not to say that system administrators are (or should be) responsible for the psychological well-being of all the system’s users, but there are some simple precautions which the system staff can observe in order to promote the smooth running of the community. In some countries, an organization might be sued by a user who believed he or she had not been sufficiently looked after.
5.8.1Health
Frequent computer users are not usually aware of how they can be damaging their own health. Unlike cigarettes, computers do not have a government health warning. Whether or not this is an issue for system administrators is open for discussion, but often the system administrator is the only person who thinks about the users and the hardware they use. Certainly every administrator needs to look after his/her own health and, along the way, it is natural to think of the health of others. Fortunately it is not difficult to avoid the worst problems.
•Eyes should be protected, We only have one pair and they must last our entire lives. Ironically, users who wear glasses (not contact lenses) suffer less from computer usage, because their eyes are partially protected from the radiation from the screen.
A computer screen works by shooting charged electrons at a phosphorescent surface. If one touches the screen one notices that it is charged with static
172 |
CHAPTER 5. USER MANAGEMENT |
electricity. The effect of this is to charge dust particles and throw them out into users’ faces. This can cause irritation to the eyes over long periods. Solution: wear glasses or obtain an anti-static screen with an earth wire which counteracts this problem.
Another major cause of eye strain is reflection. If there is a light source behind a user, it will reflect in the screen and the eyes will be distracted by the reflection. The image on the screen lies on the screen surface, any reflected images lie behind the screen (as far behind the screen as the source is in front of the screen). This confuses the eyes into focusing back and forth between the reflection and the image. The result is eye strain. The solution is to (i) eliminate all light sources which can cause reflections, (ii) obtain an anti-reflective screen cover. This can be combined with an antistatic screen. The best solution today, however, is to purchase only good LCD flat screens; these have sharp clear pictures, low radiation and are usually coated in anti-glare plastic. They are a giant leap forward in screen technology.
Prolonged eye strain can lead to problems reading and focusing. It can lead to headaches and neck ache from squinting.
•Back: The back (spine) is one of the most complex and important parts of the body. It supports the upper body and head, and is attached to the brain (where applicable). The upper body is held up by muscles in the stomach and lower back. If these muscles are relaxed by slouching for long periods, unnecessary strain is placed on muscles and bones which were not meant to bear the weight of the body.
To avoid back problems, users should (i) sit in a good chair, (ii) sit upright, using those all-important flat tummy muscles and lower back muscles to support the upper body. They should not sit in a draft. Cold air blowing across the back and neck causes stiffness and tension.
•Mouse strain: Mouse strain is a strain in the tendons of the finger and forearm, which spreads to the shoulder and back and can be quite painful. It comes from using the mouse too much. The symptoms can be lessened by making sure that users do not sit too far away from the desk where the mouse lies and by having a support for the mouse forearm. The ultimate solution is simple: don’t use the mouse. Use of the keyboard is far less hazardous. Learning keyboard shortcuts is good for prolonged work.
•Pregnancy and cancer: Some studies recommend that pregnant women wear protective aprons when sitting in front of computer screens. It is unclear whether this has any real purpose, since any radiation from the screen would be easily stopped by normal clothing.
•Generally: Users should not sit for long periods without taking a break. Looking away from the screen (to a far away object) at regular intervals relaxes the eyes. Walking around exercises the back and relaxes the shoulders. Use of anti-static, anti-reflective screens is recommended.