Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка по ФОИТ.doc
Скачиваний:
215
Добавлен:
31.05.2015
Размер:
1.33 Mб
Скачать

15.4. Магнитооптические явления

К ним относят группу явлений, связанных с прохождением электромагнитного излучения через вещества, помещенные в магнитном поле.

Эффект Фарадея. Если линейно-поляризованный свет проходит через вещество, помещенное в магнитное поле, вектор напряженности которого совпадает с напряжением распространения света, то плоскость поляризации света поворачивается на некоторый угол. Этот угол пропорционален длине пути света в веществе и напряженности поля, и обратно пропорционален квадрату длины волны. Зависит он от свойств вещества. Так, он сильно изменяется вблизи линий поглощения данного вещества. Особенно сильный эффект наблюдается в тонких прозрачных пленках железа, никеля и кобальта. При прохождении света в прямом и обратном направлении углы поворота вследствие эффекта Фарадея не компенсируются, а суммируются, в отличии от естественного вращения поляризации в некоторых веществах. Диамагнетики в магнитном поле всегда обнаруживают положительное вращения (т.е. вращение по часовой стрелке, если смотреть по направлению поля), пара и ферромагнетики – отрицательные.

Пример применения:

- позиционно-чувствительный датчик с магнитооптической модуляцией, содержащий поляризатор, анализатор и ячейку Фарадея, отличающийся тем, что с целью повышения чувствительности, магнитооптический активный элемент ячейки Фарадея выполнен из составных двух частей, например, призм с противоположным по знаку постоянными Верде, расположенных в симметрично относительно оптической оси системы.

Природа эффекта объясняется различным влиянием магнитного поля на скорость распространения в веществе правоциркулярно и левоциркулярно поляризованных световых волн, в результате чего между ними накапливается разность фаз, приводящая при их сложении к возникновению волн с повернутой плоскостью поляризации.

Как обычно, возможные применения вытекают из физической сущности эффекта; управление поворотом плоскости поляризации с помощью магнитного поля или же измерение магнитных полей по углу поворота плоскости поляризации:

- оптический квантовый генератор, содержащий задающий генератор, оптический квантовый усилитель и установленные между ними согласующее устройство, отличающееся тем, что с целью улучшения однородности пучка без уменьшения его мощности, согласующее устройство выполнено в виде расположенного между двумя поляризаторами элемента, обладающего измеряющейся по радиусу вращательной способностью;

- устройство по п.1, отличающееся тем, что в качестве названного элемента использован вращатель Фарадея, выполненный в виде цилиндра из свинцового стекла установленного в соленоиде;

- устройство магнитооптического воспроизведения информации с магнитного носителя, содержащее источник плоскополяризованного света, анализатор, фотоприемник и магнитную головку, отличающееся тем, что с целью повышения чувствительности, его магнитная головка снабжена магнитооптическим кристаллом установленным на участке заднего зазора, расположенным на одной линии между источником плоскополяризованного света и анализатором пучка этого света.

Часто эффект Фарадея используют для создания невзаимных элементов т.е. устройств, пропускающих излучение только в определенном направлении.

Оптический вентильсостоит из двух поляризаторов, скрещенных под углом 45° и элемента Фарадея, помещенного между ними. Элемент рассчитан так, что, вращая плоскость поляризации света на 45°, и свет проходит через второй поляризатор. Луч, идущий в обратном направлении, вращается в ту же сторону, что и прямой луч и оказывается повернутым на 90° относительно первого поляризатора, и значит не пропускается им. В частности такие вентили используют в лазерах бегущей волны и в оптических усилителях.

В СВЧ-технике для создания вентилей, фазовращателей и циркуляторов широко используют эффект Фарадея на ферритах, которые практически прозрачны для электромагнитных волн этого диапазона (дици-, санти- и миллиметровые радиоволны).

Существует и так называемый обратный эффект Фарадея– возникновение в среде магнитного поля под действием мощного циркулярнополяризованного света, вызывающего циркулярное движение электронов (1).

Эффект Фарадея –один из эффектов магнитооптики. Заключается во вращении плоскости поляризации линейно поляризованного света, распространяющегося в веществе вдоль постоянного магнитного поля, в котором находится это вещество. Открыт М. Фарадеем в 1845 г.

Под действием магнитного поля показатели преломления (n+иn-) для циркулярно право- и левополяризованного света становятся различными. Вследствие этого при прохождении через среду линейно поляризованного излучения его лево- и правополяризованные составляющие распространяются с различными фазовыми скоростями, приобретая разность хода, линейно зависящую от оптической длины пути.

В результате плоскость линейно поляризованного монохроматического света поворачивается на некоторый угол, зависящий от длины пути, длины волны и показателей преломления n+иn-. Эффект Фарадея тесно связан с эффектом Зеемана и является следствием его[3].

Частным случаем эффекта Фарадея является магнитооптический эффект Керра – при отражении под любым углом, в том числе и по нормали к поверхности, линейнополяризованного света от намагниченного ферромагнетика возникает элептически поляризованный свет. Фактически, магнитооптический эффект Керра это вращение плоскости поляризации части излучения в тонком поверхностном слое ферромагнетика в магнитном поле.

Магнитооптическая установка для автоматической записи магнитных характеристик ферромагнетика, в которой использование магнитооптического эффекта Керра позволяет снимать кривые намагничивания и гистерезиса на участках поверхности размером 1 мк2.

При распространении света в веществе перпендикулярно магнитному полю возникает двойное лучепреломление, величина которого пропорциональна квадрату напряженности магнитного поля (эффект Коттона-Муттона).

Эффект Коттона-Мутона –двойное лучепреломление света в изотропном веществе, помещенном в магнитное поле (перпендикулярно световому лучу). Впервые обнаружено в коллоидных растворах англичанином Керром в 1901 г., исследовано французами Коттоном и Мутоном в 1907 г.

Суть эффекта состоит в том, что образец прозрачного вещества помещают между полюсами мощного электромагнита и пропускают через него луч монохроматического света, линейно поляризованного в плоскости, составляющей с направление магнитного поля угол в 45°. Проходящий через вещество луч света из линейно-поляризованного превращается в эллиптически поляризованный, так как он разделяется в веществе, ставшим анизотропным, на два луча - обыкновенный и необыкновенный, имеющие разные показатели преломления. Эти лучи распространяются под очень малым углом друг к другу. Поэтому для обнаружения эффекта необходимы достаточно сильные поля. Величина угла расхождения лучей пропорциональна квадрату напряженности магнитного поля и длине волны света[3].

Наложение сильного магнитного поля ориентирует хаотически расположенные молекулы (если последние имеют постоянный магнитный момент), что и приводит к оптической анизотропии. Этот эффект много слабее, чем электрооптических эффект Керра, а в технике применяется редко.

Механизм всех магнитооптических явлений тесно связан с механизмом прямого и обращенного эффекта Зеемана.

Прямой (обращенный) эффект Зеемана состоит в расщеплении спектральных линий испускаемого (поглощаемого) излучения под действием магнитного поля на излучающее (поглощающее)вещество. При этом неполяризованное излучение с частотой направления поля расщепляется на два компонента (линии) с частотами и, первая из которых поляризована по левому кругу, а вторая по правому. В направлении же перпендикулярном поля расщепление имеет такой характер: имеется при линейном-поляризованные компоненты с частотами.

Крайние компоненты поляризованы перпендикулярно магнитному полю, средние же с неизменной частотой поляризована вдоль поля и по интенсивности вдвое превосходит соседние. Величина смещения частоты пропорциональна индукции магнитного поля. Эффект Зеемана обусловлен расщеплением в магнитном поле энергетических уровней атомов или молекул на подуровни, между которыми возможны квантовые переходы.

Примеры применения:

- кольцевой лазер для определения скорости вращения имеет трубу и отражательные зеркала, которые создают замкнутый оптический контур, включающий ось лазера, а также средства с помощью которых световые лучи обособляются и накладываются, циркулируя в оптическом контуре в противоположных направлениях. Лазер отличается тем, что предусмотрено устройство служащее для воздействия на трубу лазера осевого магнитного поля таким образом, что в соответствие с эффектом Зеемана, создается два луча с противоположной круговой поляризацией. Предусмотрено устройство, которое обеспечивает поступательное движение только одного такого луча в каждом направлении вдоль оптического контура;

- аппарат предназначен для реализации способа определения концентрации парамагнитного материала в газовой смеси. Образец смеси подвергают воздействию магнитного поля средней напряженности и освещают лазерным излучением постоянной частоты. Магнитное поле энергетическими уровнями в парамагнитном материале до величины, соответствующей условию резонансас лазерным излучением. Для количественной корреляции вариации интенсивности лазерного излучения, проходящего через смесь, как функция напряженности магнитного поля используют стандартные процедуры детектирования. В случае окиси азота способ достаточно чувствителен, чтобы обнаруживать концентрации, значительно меньше, чем одна часть на миллион.

В заключении отметим, что механизм эффекта Фарадея, по сути дела, обусловлен обращенным эффектом Зеемана. Им же объясняется избирательное поглощение радиоволн парамагнитными телами, помещенными в магнитное поле.

Эффект Зеемана –расщепление уровней энергии и спектральных линий атома и других атомных систем в магнитном поле. Открыт в 1896 г. голландским физиком П. Зееманом при исследовании свечения паров натрия в магнитном поле. Под действием магнитного поля уровни энергии расщепляются на зеемановские подуровни; при переходе между подуровнями уровней ei и Ек вместо одной спектральной линии появляется несколько поляризованных компонент.

Может наблюдаться простой (нормальный) зеемановский эффект для одиночной спектральной линии. Величина расщепления пропорциональна напряженности магнитного поля Н.

Рис. 15.3. Простой эффект Зеемана:

а) - без поля (vq - частота, соответствующая исследуемой спектралиной линии); б) – при наличии магнитного поля

Примечание: созданы устройства для прецизионного измерения любых магнитных полей (квантовые магнетометры) [3].