
- •В.Л. Бурковский ю.Н. Глотова
- •Введение
- •1. Механические эффекты и деформация
- •1.1. Силы инерции
- •1.2. Гравитация
- •1.3. Трение и износ
- •1.4. Деформация
- •2. Молекулярные явления
- •2.1. Тепловое расширение вещества
- •2.2. Фазовые переходы, агрегатные состояния веществ
- •2.3. Поверхностное натяжение жидкостей
- •2.4. Капиллярность
- •2.5. Сорбция
- •2.6. Диффузия
- •2.7. Тепломассообмен
- •2.8. Термофорез и фотофорез
- •2.9. Молекулярные цеолитовые сита
- •3. Гидростатика, гидроаэродинамика
- •3.1. Течение жидкости и газа
- •3.2. Явление сверхтекучести
- •3.3. Скачок уплотнения
- •3.4. Дросселирование жидкостей и газов
- •3.5. Гидравлические удары
- •3.6. Kавитация
- •4. Колебания и волны
- •4.1. Механические колебания
- •4.2. Акустика
- •4.3. Ультразвук
- •4.4. Волновое движение
- •5. Электромагнитные явления
- •5.1. Взаимодействие тел
- •5.2. Закон Джоуля-Ленца
- •5.3. Проводимость металлов
- •5.4. Электромагнитное поле
- •5.5. Проводник с током в магнитном поле
- •5.6. Электромагнитная индукция
- •5.7. Электромагнитные волны
- •6. Электрические свойства вещества, диэлектрики
- •6.1. Проводники, изоляторы и полупроводники
- •6.2. Диэлектрическая проницаемость
- •6.3. Пробой диэлектриков
- •6.4. Электромеханические эффекты в диэлектриках
- •6.5. Пироэлектрики и сегнетоэлектрики
- •6.6. Электреты
- •7. Магнитные свойства вещества
- •7.1. Магнетики
- •7.2. Магнитокалорический эффект
- •7.3. Магнитострикция
- •7.4. Магнитоэлектрический эффект
- •7.5. Гиромагнитные явления
- •7.6. Магнитоакустический эффект
- •7.7. Ферромагнитный резонанс
- •7.8. Аномалии свойств при фазовых переходах
- •8. Контактные, термоэлектрические и эмиссионные явления
- •8.1. Контактная разность потенциалов
- •8.2. Термоэлектрические явления
- •8.3. Электронная эмиссия
- •9. Гальвано- и термомагнитные явления
- •9.1. Гальваномагнитные явления
- •9.2. Термомагнитные явления
- •10. Электрические разряды в газах
- •10.1. Факторы, влияющие на газовый разряд
- •10.2. Высокочастотный тороидальный разряд
- •10.3. Роль среды и электродов
- •10.4. Тлеющий разряд
- •10.5. Коронный разряд
- •10.6. Дуговой разряд
- •10.7. Искровой разряд
- •10.8. Факельный разряд
- •10.9. "Стекание" зарядов с острия
- •11. Электрокинетические явления
- •12. Свет и вещество
- •12.1. Свет, ультрафиолетовое и инфракрасное излучение
- •12.2. Отражение и преломление света
- •12.3. Поглощение и рассеяние
- •12.4. Испускание и поглощение света
- •13. Фотоэлектрические и фотохимеческие явления
- •13.1. Фотоэлектрические явления
- •13.2. Фотохимические явления
- •14. Люминисценция
- •14.1. Люминесценция, возбуждаемая электромагнитным излучением
- •14.2. Люминесценция, возбуждаемая корпускулярным излучением
- •14.3. Люминесценция, возбуждаемая электрическим полем
- •14.4. Хемилюминесценция
- •14.5. Триболюминесценция
- •14.6. Радиотермолюминесценция
- •14.7. Стимуляция и тушение люминесценции
- •14.8. Эффект поляризации
- •15. Анизотропия и свет
- •15.1. Двойное лучепреломление
- •15.2. Механооптические явления
- •15.3. Электрооптические явления
- •15.4. Магнитооптические явления
- •15.5. Фотодихроизм
- •15.6. Поляризация при рассеивании света
- •16. Эффекты нелинейной оптики
- •17. Явления микромира
- •17.1. Радиоактивность
- •17.2. Рентгеновское и гамма-излучения
- •17.3. Взаимодействие частиц с веществом
- •17.4. Электронный парамагнитный резонанс
- •17.5. Ядерный магнитный резонанс
- •18. Другие физические эффекты
- •18.1. Стробоскопический эффект
- •18.2. Муаровый эффект
- •18.3. Высокодисперсные структуры
- •18.4. Жидкие кристаллы
- •18.5. Лента Мебиуса
- •18.6. Реология
- •Заключение
- •Алфавитный указатель физических законов, явлений и эффектов
- •394026 Воронеж, Московский просп., 14
15.3. Электрооптические явления
Так называют явления связанные прохождением света через среды, помещенные в электрическом поле.
Электрооптический эффект Керра. Многие изотропные вещества, помещенные в электрическое поле, приобретают свойства одноосных кристаллов, т.е. обнаруживают оптическую анизотропию, приводящую к двойному лучепреломлению света, проходящего через вещество перпендикулярно направлению поля. При этом величина двойного лучепреломления пропорциональна квадрату напряженности поля и ее знак не меняется при изменении направления поля на обратное. (другие названия эффекта:квадратичный электрооптический эффект,поперечный электрооптический эффект).
Величина эффекта зависит от вещества, его температуры и длины волны света. В газах эффект Керра мал, а в жидкостях его величина гораздо больше. Аномально сильно он проявляется в нитробензоле и подобных ему жидкостях.
Наиболее часто указанный эффект реализуется в т.н. электрооптических затворах Керра. Прозрачную кювету с электродами для создания поля, заполненную нитробензолом, помещают между скрещенными поляризатором и анализатором таким образом, что направление поля составляет угол 45° с их главными плоскостями поляризации. Если поле отсутствует, такое устройство не прозрачно для света. При наложении поля, линейно поляризованный свет при прохождении через кювету расцепляется на два перпендикулярно поляризованных луча, имеющих в пределах кюветы различные скорости распространения. При этом между ними возникает разность фаз, что приводит к эллиптической поляризации света, вышедшего из кюветы. При этом часть его проходит через анализатор. Затвор открыт. Высокая скорость срабатывания такого затвора (10-11сек) обусловило его применением в исследованиях быстропротекающих процессов и для высокочастотной (до 109Гц) модуляция оптических сигналов. Применение эффекта дает хорошие результаты и в том случае, когда требуется безинерционное пространственная модуляция света (отклонение луча, его расщепление и т.п.). Взаимосвязь через эффект Керра двух полей – электрического и оптического – позволяет применять его для дистанционного измерения электрических величин оптическими методами.
Еще два примера применения эффекта Керра:
- оптическая система с управляемым фокусным расстоянием, отличающийся тем, что с целью безинерционного изменения фокусного расстояния она выполнена в виде цилиндрического рабочего тела из вещества, обладающего электрооптическим эффектом, помещенного внутрь, например, шестипольного конденсатора, электрическое поле которого создает такое распределение показателя преломления в веществе рабочего тела, что падающий на его торец параллельный пучок света собирается в фокусе, положение которого на оси системы зависит от приложенного конденсатору напряжения;
- устройство для измерения температуры содержащее источник света, пластины из матированного прозрачного материала, пространстве между которыми заполнено жидкостью с близким пластинам показателем преломления и различным по знаку или величине температурным коэффициентом показателя преломления, отличающееся тем, что с целью расширения диапазона измерений, в него введены, прозрачные электроды, выполненные, например, на основе пленок окиси олова, нанесенные снаружи на пластины, подключенные к источнику питания, а в качестве жидкости заполняющей пространство между пластинами использован нитробензол.
Значительным квадратичным электрооптическим эффектом обладают и некоторые кристаллы (КТ Ват).
Эффект Керра, вызванный электрическим полем световой волны называется высокочастотным. Он проявляется в том, что для мощного излучения показатель преломления жидкости зависит от интенсивности света, т.е. среда становится нелинейной, что для интенсивных лазерных пучков приводит к самофокусировке.
Эффект Керра– квадратичный электрооптический эффект, возникновение двойного лучепреломления в оптически изотропных веществах (жидкостях, стеклах, кристаллах с центром симметрии) под воздействием однородного электрического поля. Открыт шотландским физиком Дж. Керром в 1875 г. величина двойного лучепреломления пропорциональна квадрату напряженности электрического поля.
Магнитооптический эффект Керра состоит в том, что плоско поляризованный свет, отражаясь от намагниченного ферромагнетика, становится электрически поляризованным, при этом большая ось эллипса поляризации поворачивается на некоторый угол по отношению к плоскости поляризации падающего света. Наблюдается также оптический эффект Керра, состоящий в том, что возникает двулучепреломление под действием поля мощного оптического излучения.
Примечание: в ячейке Керра - электрооптическом устройстве, основанном на этом эффекте, применяемой в роли оптического затвора
Рис. 15.2. Модулятора света
Ячейка Керра состоит из сосуда с прозрачными окнами, заполненного пропускающим свет веществом, в которые погружены два электрода. Между электродами проходит линейно поляризованный световой луч, который в отсутствии поля не пропускается анализатором А. При включении поля
возникает двойное лучепреломление и анализатор А частично пропускает свет (анализатор А и поляризатор П-в скрещенном положении) [3].
Эффект Поккельса. Возникновение двойного лучепреломления в кристалле при наложении электрического поля в направлении распространения света называетсяэффектом Поккальса. При этом величина разности фаз расщепленных лучей пропорциональна первой степени напряженности поля (линейный электрооптический эффект, а также продольный электрооптический эффект). Наиболее ярко эффект реализуется в кристалле дигидрофосфата калия (КДР).
Эффект Поккельса по сравнению с эффектом Керра имеет меньшую зависимость от температуры. Применение этих эффектов аналогичны (затворы вращатели плоскости поляризации, индикаторы электрического поля, модуляторы света).
Примеры применения:
- оптико-электронное устройство для измерения мощности, содержащее монохротический источник излучения, магнитооптическую ячейку Фарадея с поляризатором и анализатором, фотоприемник и усилитель с нагрузкой в выходной цепи, отличающийся тем, что с целью повышения точности измерения, оно снабжено последовательной цепочкой элементов состоящей из четвертьволновой пластины, электрооптической ячейки Поккельса и дополниельного анализатора, установленной между анализатором ячейки Фарадея и фотоприемником;
- модулятор света, включающий в полупроводниковую структуру генерирующую в домены сильного поля, боковая поверхность или часть боковой поверхности, которая покрыта диэлектриком, отличающийся тем, что с целью расширения частотного диапазона модулируемого излучения, уменьшение потерь и увеличение коэффициента модуляции, диэлектрическое покрытие выполнено из материала с константой электрооптического эффекта большей, чем у материала полупроводниковой структуры.
Эффект Поккельса –линейный электрооптических эффект, изменение показателя преломления света в кристаллах, помещенных в электрическое поле, пропорциональное напряженности приложенного поля. Как следствие этого эффекта в кристаллах появляется двойное лучепреломление или меняется его величина. Эффект Поккельса наблюдается только у пьезоэлектриков. Был открыт в 1894 г. немцем Ф. Поккельсом. Главная причина - электрические напряжения большой величины (десятки - сотни кВ) для получения заметного эффекта. В последнее время найдены кристаллы, требующие малых управляющих напряжений (порядка десятков или сотен вольт).
Примечание: системы углового отклонения светового луча; устройства для создания двумерного оптического изображения.
Модуляторы света - основаны почти все на эффекте Поккельса. Возможно осуществить модуляцию до частот ~1013 Гц, модуляция добротности лазеров[3].