
- •В.Л. Бурковский ю.Н. Глотова
- •Введение
- •1. Механические эффекты и деформация
- •1.1. Силы инерции
- •1.2. Гравитация
- •1.3. Трение и износ
- •1.4. Деформация
- •2. Молекулярные явления
- •2.1. Тепловое расширение вещества
- •2.2. Фазовые переходы, агрегатные состояния веществ
- •2.3. Поверхностное натяжение жидкостей
- •2.4. Капиллярность
- •2.5. Сорбция
- •2.6. Диффузия
- •2.7. Тепломассообмен
- •2.8. Термофорез и фотофорез
- •2.9. Молекулярные цеолитовые сита
- •3. Гидростатика, гидроаэродинамика
- •3.1. Течение жидкости и газа
- •3.2. Явление сверхтекучести
- •3.3. Скачок уплотнения
- •3.4. Дросселирование жидкостей и газов
- •3.5. Гидравлические удары
- •3.6. Kавитация
- •4. Колебания и волны
- •4.1. Механические колебания
- •4.2. Акустика
- •4.3. Ультразвук
- •4.4. Волновое движение
- •5. Электромагнитные явления
- •5.1. Взаимодействие тел
- •5.2. Закон Джоуля-Ленца
- •5.3. Проводимость металлов
- •5.4. Электромагнитное поле
- •5.5. Проводник с током в магнитном поле
- •5.6. Электромагнитная индукция
- •5.7. Электромагнитные волны
- •6. Электрические свойства вещества, диэлектрики
- •6.1. Проводники, изоляторы и полупроводники
- •6.2. Диэлектрическая проницаемость
- •6.3. Пробой диэлектриков
- •6.4. Электромеханические эффекты в диэлектриках
- •6.5. Пироэлектрики и сегнетоэлектрики
- •6.6. Электреты
- •7. Магнитные свойства вещества
- •7.1. Магнетики
- •7.2. Магнитокалорический эффект
- •7.3. Магнитострикция
- •7.4. Магнитоэлектрический эффект
- •7.5. Гиромагнитные явления
- •7.6. Магнитоакустический эффект
- •7.7. Ферромагнитный резонанс
- •7.8. Аномалии свойств при фазовых переходах
- •8. Контактные, термоэлектрические и эмиссионные явления
- •8.1. Контактная разность потенциалов
- •8.2. Термоэлектрические явления
- •8.3. Электронная эмиссия
- •9. Гальвано- и термомагнитные явления
- •9.1. Гальваномагнитные явления
- •9.2. Термомагнитные явления
- •10. Электрические разряды в газах
- •10.1. Факторы, влияющие на газовый разряд
- •10.2. Высокочастотный тороидальный разряд
- •10.3. Роль среды и электродов
- •10.4. Тлеющий разряд
- •10.5. Коронный разряд
- •10.6. Дуговой разряд
- •10.7. Искровой разряд
- •10.8. Факельный разряд
- •10.9. "Стекание" зарядов с острия
- •11. Электрокинетические явления
- •12. Свет и вещество
- •12.1. Свет, ультрафиолетовое и инфракрасное излучение
- •12.2. Отражение и преломление света
- •12.3. Поглощение и рассеяние
- •12.4. Испускание и поглощение света
- •13. Фотоэлектрические и фотохимеческие явления
- •13.1. Фотоэлектрические явления
- •13.2. Фотохимические явления
- •14. Люминисценция
- •14.1. Люминесценция, возбуждаемая электромагнитным излучением
- •14.2. Люминесценция, возбуждаемая корпускулярным излучением
- •14.3. Люминесценция, возбуждаемая электрическим полем
- •14.4. Хемилюминесценция
- •14.5. Триболюминесценция
- •14.6. Радиотермолюминесценция
- •14.7. Стимуляция и тушение люминесценции
- •14.8. Эффект поляризации
- •15. Анизотропия и свет
- •15.1. Двойное лучепреломление
- •15.2. Механооптические явления
- •15.3. Электрооптические явления
- •15.4. Магнитооптические явления
- •15.5. Фотодихроизм
- •15.6. Поляризация при рассеивании света
- •16. Эффекты нелинейной оптики
- •17. Явления микромира
- •17.1. Радиоактивность
- •17.2. Рентгеновское и гамма-излучения
- •17.3. Взаимодействие частиц с веществом
- •17.4. Электронный парамагнитный резонанс
- •17.5. Ядерный магнитный резонанс
- •18. Другие физические эффекты
- •18.1. Стробоскопический эффект
- •18.2. Муаровый эффект
- •18.3. Высокодисперсные структуры
- •18.4. Жидкие кристаллы
- •18.5. Лента Мебиуса
- •18.6. Реология
- •Заключение
- •Алфавитный указатель физических законов, явлений и эффектов
- •394026 Воронеж, Московский просп., 14
5.4. Электромагнитное поле
Электрическое и магнитные поля тесно связаны между собой. В природе существует электромагнитное поле– чисто электрические и чисто магнитные поля являются лишь его частными случаями. Изменяющиеся электрические и магнитные поля индуктируют друг друга.(под изменением поля надо понимать не только изменение его интенсивности, но и движение поля как целого).
Взаимное индуктирование электрического и магнитного полей происходит в пространстве с огромной скоростью (со скоростью света) и представляет собой распространение электромагнитных волн. Такими электромагнитными волнами являются радиоволны, свет – инфракрасный, видимый, ультрафиолетовый, а также рентгеновские и гамма-лучи. Поэтому многие эффекты, описанные в этом разделе, имеют аналоги и в оптике, и, наоборот, "оптические" эффекты широко применяются в радиотехнике, особенно в диапазоне СВЧ (например, эффект Фарадея).
Магнитное поле может быть создано постоянными магнитными, переменными электрическим полем и движущимися электрическими зарядами, в частности теми, которые движутся в проводнике, создавая электрический ток.
Основной характеристикой электрического поля является напряженность, определяемая через силу, действующую на заряд. Основной характеристикой магнитного поля являетсявектор магнитной индукции, также определяемый через силу, действующую на заряд в магнитном поле.
(5.1)
На неподвижные заряды магнитное поле вообще не действует. Движущийся заряд магнит не притягивает и не отталкивает, а действует на него в направлении, перпендикулярном к полю и к скорости заряда. Сила, действующая на заряд в этом случае, называется силой Лоренца.
(5.2)
При движении зарядов в магнитном поле не вдоль линии этого поля из-за силы Лоренца траектория их движения будет представлять собой спираль. Чем сильнее поле, тем меньше радиус этой спирали. Период обращения заряда не зависит от скорости движения, а только от отношения величины заряда к массе заряженной частицы.
В случае перпендикулярности силовых линий магнитного поля плоскости движения заряженной частицы она начинает двигаться по кругу, причем радиус этого круга зависит от напряженности магнитного поля.
5.5. Проводник с током в магнитном поле
Когда по проводнику, помещенному в магнитное поле, идет электрический ток, электроны движутся относительно положительных ионов, составляющих кристаллическую решетку. Поэтому и в системе отсчета, связанной с решеткой (т.е. в системе отсчета, в которой проводник неподвижен, сила Лоренца действует только на электроны). Через взаимодействие электронов с ионами эта сила передается решетке.
Возможен и обратный эффект: колебания решетки передаются электронам, а их движение в магнитном поле приводит к возникновению тока.
Взаимодействие двух проводников, по которым текут электрические токи, осуществляется через магнитное поле. Каждый ток создает магнитное поле, которое действует на другой проводник. Таким образом, взаимодействуют отнюдь не поля между собой, а поле и ток.
Аналогичным образом взаимодействуют и движущиеся электрические заряды. Причем для магнитных взаимодействий третий закон Ньютона не выполняется (сила, действующая на один заряд со стороны другого, не равна силе действующей на второй заряд со стороны первого).