
- •В.Л. Бурковский ю.Н. Глотова
- •Введение
- •1. Механические эффекты и деформация
- •1.1. Силы инерции
- •1.2. Гравитация
- •1.3. Трение и износ
- •1.4. Деформация
- •2. Молекулярные явления
- •2.1. Тепловое расширение вещества
- •2.2. Фазовые переходы, агрегатные состояния веществ
- •2.3. Поверхностное натяжение жидкостей
- •2.4. Капиллярность
- •2.5. Сорбция
- •2.6. Диффузия
- •2.7. Тепломассообмен
- •2.8. Термофорез и фотофорез
- •2.9. Молекулярные цеолитовые сита
- •3. Гидростатика, гидроаэродинамика
- •3.1. Течение жидкости и газа
- •3.2. Явление сверхтекучести
- •3.3. Скачок уплотнения
- •3.4. Дросселирование жидкостей и газов
- •3.5. Гидравлические удары
- •3.6. Kавитация
- •4. Колебания и волны
- •4.1. Механические колебания
- •4.2. Акустика
- •4.3. Ультразвук
- •4.4. Волновое движение
- •5. Электромагнитные явления
- •5.1. Взаимодействие тел
- •5.2. Закон Джоуля-Ленца
- •5.3. Проводимость металлов
- •5.4. Электромагнитное поле
- •5.5. Проводник с током в магнитном поле
- •5.6. Электромагнитная индукция
- •5.7. Электромагнитные волны
- •6. Электрические свойства вещества, диэлектрики
- •6.1. Проводники, изоляторы и полупроводники
- •6.2. Диэлектрическая проницаемость
- •6.3. Пробой диэлектриков
- •6.4. Электромеханические эффекты в диэлектриках
- •6.5. Пироэлектрики и сегнетоэлектрики
- •6.6. Электреты
- •7. Магнитные свойства вещества
- •7.1. Магнетики
- •7.2. Магнитокалорический эффект
- •7.3. Магнитострикция
- •7.4. Магнитоэлектрический эффект
- •7.5. Гиромагнитные явления
- •7.6. Магнитоакустический эффект
- •7.7. Ферромагнитный резонанс
- •7.8. Аномалии свойств при фазовых переходах
- •8. Контактные, термоэлектрические и эмиссионные явления
- •8.1. Контактная разность потенциалов
- •8.2. Термоэлектрические явления
- •8.3. Электронная эмиссия
- •9. Гальвано- и термомагнитные явления
- •9.1. Гальваномагнитные явления
- •9.2. Термомагнитные явления
- •10. Электрические разряды в газах
- •10.1. Факторы, влияющие на газовый разряд
- •10.2. Высокочастотный тороидальный разряд
- •10.3. Роль среды и электродов
- •10.4. Тлеющий разряд
- •10.5. Коронный разряд
- •10.6. Дуговой разряд
- •10.7. Искровой разряд
- •10.8. Факельный разряд
- •10.9. "Стекание" зарядов с острия
- •11. Электрокинетические явления
- •12. Свет и вещество
- •12.1. Свет, ультрафиолетовое и инфракрасное излучение
- •12.2. Отражение и преломление света
- •12.3. Поглощение и рассеяние
- •12.4. Испускание и поглощение света
- •13. Фотоэлектрические и фотохимеческие явления
- •13.1. Фотоэлектрические явления
- •13.2. Фотохимические явления
- •14. Люминисценция
- •14.1. Люминесценция, возбуждаемая электромагнитным излучением
- •14.2. Люминесценция, возбуждаемая корпускулярным излучением
- •14.3. Люминесценция, возбуждаемая электрическим полем
- •14.4. Хемилюминесценция
- •14.5. Триболюминесценция
- •14.6. Радиотермолюминесценция
- •14.7. Стимуляция и тушение люминесценции
- •14.8. Эффект поляризации
- •15. Анизотропия и свет
- •15.1. Двойное лучепреломление
- •15.2. Механооптические явления
- •15.3. Электрооптические явления
- •15.4. Магнитооптические явления
- •15.5. Фотодихроизм
- •15.6. Поляризация при рассеивании света
- •16. Эффекты нелинейной оптики
- •17. Явления микромира
- •17.1. Радиоактивность
- •17.2. Рентгеновское и гамма-излучения
- •17.3. Взаимодействие частиц с веществом
- •17.4. Электронный парамагнитный резонанс
- •17.5. Ядерный магнитный резонанс
- •18. Другие физические эффекты
- •18.1. Стробоскопический эффект
- •18.2. Муаровый эффект
- •18.3. Высокодисперсные структуры
- •18.4. Жидкие кристаллы
- •18.5. Лента Мебиуса
- •18.6. Реология
- •Заключение
- •Алфавитный указатель физических законов, явлений и эффектов
- •394026 Воронеж, Московский просп., 14
3.3. Скачок уплотнения
Что такое лобовое сопротивлениепри обтекании твердых тел потоком жидкости или газа – общеизвестно. Однако, кроме лобового сопротивления, при обтекании возникает так называемоеволновое сопротивление, являющееся результатом затрат энергии на образование акустических или ударных волн. В газе, например, ударные волны возникают при образованиискачка уплотненияу лобовой поверхности тела при обтекании его сверхзвуковым потоком газа. При образовании скачка уплотнения резко увеличивается плотность, температура, давление и скорость вещества потока; в результате могут иметь место процессыдиссоциациииионизациимолекул, сопровождающиеся мощным световым излучением.
Эффект Коанда. Румынский ученый Генри Коанд в 1932 году установил, что струя жидкости, вытекающая из сопла, стремится отклониться по направлению к стенке и при определенных условиях прилипает к ней. Это объясняется тем, что боковая стенка препятствует свободному поступлению воздуха с одной стороны струи, создавая вихрь в зоне и пониженного давления. Аналогично и поведение струи газа. На основе этого эффекта строится одна из ветвейпневмоникиили струйной автоматики [4].
Эффект воронки. Если уровень жидкости в сосуде с открытой поверхностью понизить до определенного уровня при свободном сливе жидкости через отверстие в нижней части сосуда, то на поверхности образуется вихревое движение воды (водоворот), устойчивость которого трудно нарушить.
3.4. Дросселирование жидкостей и газов
Дросселирование– это понижение давления и, следовательно, расширение движущегося газа, пара или жидкости при прохождении черездроссель(местное гидродинамическое сопротивление – сужение трубопровода, вентиль, кран, пористая перегородка и др.). Этот процесс широко применяется для измерения и регулирования расхода жидкостей и газов.
Адиобатическое (без теплообмена с окружающей средой) дросселирование обычно сопровождающиеся изменением температуры вещества. Этот эффект был обнаружен и исследован в 1852 – 62 годах и назван эффектом Джоуля-Томсона.
Эффект Джоуля-Томсона считается положительным, если вещество в процессе дросселирования охлаждается (ΔТ<0), отрицательным, если нагревается (ΔТ>0). Величина и знак эффекта определяется соотношением между работой вещества и работой сил внешнего давления, а также свойствами вещества.
В зависимости от условий
дросселирования одно и то же вещество
может как нагреваться, так и охлаждаться.
Для каждого реального газа существует
температура Ti,
при которой (для данного давления)
разность ΔT,
Т, °С проходя через нулевое значение,
меняет свой знак. Такая температура
называется температурой
инверсии. При малых
перепадах давления наблюдаетсядифференциальный
эффект Джоуля-Томсона,
при котором изменение температуры также
мало.
Эффект Джоуля-Томсона – один из основных процессов, применяемых в технике снижения газов и получения сверхнизких температур.
Для воздуха и многих других газов точка инверсии лежит выше комнатной температуры и они в процессе адиабатического дросселирования охлаждаются. На рисунке 3.2 для примера приведена кривая инверсии азота. В пределах кривой эффект положительный, вне кривой – отрицательный, для точек на самой кривой эффект равен нулю [1].