
- •Определение коэффициентов ослабления потока γ-лучей в металлах
- •Теоретическое введение
- •Описание установки и методики измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Исследование поглощения - частиц в различных материалах
- •Теоретическое введение
- •Описание установки и методики измерений
- •Контрольные вопросы
- •Определение длины пробега -частиц в воздухе
- •Т Рис.1еоретическое введение
- •Описание установки и методики измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Определение интенсивности потока частиц радиоактивного излучения.
- •Теоретическое введение
- •Описание установки
- •Порядок выполнения работы
- •Теоретический минимум
- •Литература
- •Содержание
Контрольные вопросы
1. Естественная и искусственная радиоактивность.Закон радиоактивного распада.
2. Каково происхождение и свойства -излучение?
3. Причины ослабления гамма-лучей веществом. Сущность закона ослабления γ-излучения веществом.
4. Объяснение причин существования радиоактивного природного фона.
5. Действия радиоактивных излучений на живые организмы и технические объекты.
6. Способы защиты от вредных воздействий радиоактивных излучений.
7. Активность и удельная активность радиоактивного препарата, единицы их измерений.
Лабораторная работа 3.16
Исследование поглощения - частиц в различных материалах
Цель работы:Определение максимального пробега β – частиц в металлах и энергии источника β – излучения.
Принадлежности:источник β – излучения90Sr, детектор
β – излучения, счетчик импульсов, источник питания, набор металлических поглотителей.
Теоретическое введение
Бета – распадом называется процесс
самопроизвольного превращения
нестабильного ядра в ядро – изобар
(А=const) с зарядом, отличающимся
на.
Существуют три разновидности β –
распада: электронный или β-–
распад, позитронный или β+– распад
и электронный захват или К – захват (e- захват).
Электронный распад протекает по схеме
(1)
Образовавшееся дочернее ядро имеет
зарядовое число на единицу больше, чем
у материнского ядра, а массовые числа
обоих ядер одинаковы. Наряду с электроном
испускается также антинейтрино
.
Весь процесс протекает так, как если бы
один из нейтронов материнского ядра
превратился в протон по схеме
(2)
Позитронный распад протекает по схеме
(3)
В этом случае порядковый номер дочернего ядра на единицу меньше, чем материнского. Процесс сопровождается испусканием позитрона и нейтрино ν. Позитрон является античастицей электрона, а антинейтрино – античастицей нейтрино. Процесс β+– распада протекает так, как если бы один из протонов исходного ядра превратился в нейтрон, испустив при этом позитрон и нейтрино
(4)
Для свободного протона такой процесс невозможен по энергетическим соображениям, так как масса протона меньше массы нейтрона. Однако протон в ядре может заимствовать требуемую энергию от других нуклонов.
Третий вид β – радиоактивности – электронный захват – заключается в захвате ядром электрона из К - электронной оболочки (реже L-оболочки) собственно атома.
(5)
В результате процесса один из протонов превращается в нейтрон, испуская при этом нейтрино
(6)
Данный вид β – распада имеет существенное значение для тяжелых ядер, у которых К - оболочка расположена близко к ядру. Электронный захват – обнаруживается по сопровождающему его рентгеновскому излучению. Место в электронной оболочке, освобожденное захваченным электроном, заполняется электронами из вышележащих слоев, в результате чего возникает характеристическое рентгеновское излучение.
Исследования энергетического распределения электронов β – распада показали, что в процессе β – распада испускаются электроны всех энергий от нуля до энергии Emax, приблизительно равной разности энергетических состояний материнского и дочернего атомов.
(7)
Для радиоактивного изотопа 90Sr, который используется в данной работе в качестве источника β-- радиации, энергия распада, рассчитанная по формуле (7) составляет 0,535 МэВ.
При
этом энергия, выделяющаяся при β- -
распаде распределяется между электроном
и антинейтрино в самых разнообразных
пропорциях.
Рис. 1.
Участие в β – распаде еще одной частицы диктуется и законом сохранения момента импульса. Чтобы суммарный спин возникающих частиц при β- - распаде не отличался от спина исходной частицы спину антинейтрино (и нейтрино) необходимо приписать значенияħ/2.
Бета
- распад обычно сопровождается испусканием
γ – лучей. Механизмы их возникновения
состоят в том, что дочернее ядро возникает
не только в нормальном, но и в возбужденном
состояниях, переходя затем в состояние
с меньшей энергией, ядро высвечивает γ
– фотон (рис.2).
Рис. 2.
При прохождении электронов через вещество происходит их взаимодействие с электронами и атомными ядрами, приводящее к их рассеянию и торможению. Основными механизмами, определяющими потери энергии электронов при прохождении через вещество являются ионизационное и радиационное торможение.
При ионизационном торможении кинетическая
энергия электрона тратится на возбуждение
и ионизацию атомов среды, через которую
он проходит. Другой неупругий
электромагнитный процесс – тормозное
(радиационное) излучение возникает при
быстром торможении электрона в
электрическом поле атомного ядра. Хорошо
известным примером радиационного
излучения электронов при относительно
низких энергиях (E<<m0
c2) является
непрерывный рентгеновский спектр,
возникающий при торможении электронов
на антикатоде рентгеновской трубки.
При очень больших энергиях β – электронов,
превосходящих критическую величину
Екр(для свинца Екр10
МэВ), эти потери преобладают над
ионизационными.
Длину пробега частиц в веществе до их полного торможения обозначают буквой R, и измеряют либо в единицах длины (см), либо в единицах плотности (г/см2) - удельный пробег. Связь между удельной длиной пробега и энергией электронов дается приближенной эмпирической формулой
(8)