Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2. Переменный ток.doc
Скачиваний:
86
Добавлен:
31.05.2015
Размер:
529.41 Кб
Скачать

Цепи однофазного синусоидального тока Основные понятия

Мгновенные значения синусоидальных тока и напряжения определяются выражениями

i(t)= Im sin(ωt + ψi), u(t)= Um sin(ωt + ψu),

где Im,Um– амплитудные значения тока и напряжения;

(ωt+ ψ) – фаза колебания, аргумент синусоидальной функции;

ω[рад/с] – угловая частота, которая может быть определена какω=2πf= 2π/T;

f[Гц] – линейная частота; Т [c] – период колебаний;

ψi , ψu- начальные фазы тока и напряжения, которые отсчитываются от начала координат до ближайшей точки на оси абсцисс перехода синусоидальной функции через ноль от отрицательных к положительным ее значениям

На рис. 2.1 построены временные графики мгновенных значений тока и напряжения одинаковой частоты:

i(t)= Im sin(ωt + ψi), u(t)= Um sin(ωt + ψu).

Угол, на который синусоида тока сдвинута относительно синусоиды напряжения, называют углом сдвига фазφ и определяют как разность начальных фаз напряжения и тока:

φ= ψu–ψi.

Рис. 2.1

Действующие значения периодических токов, эдс и напряжений

Овеличине периодических ЭДС, напряжений и токов обычно судят по их средним квадратичным значениям за период, которые называютсядействующими значениямиЭДС, напряжения или тока и обозначаются, соответственно, какE,U,I.

Под действующим значением синусоидального тока i(t)=Imsin(ωt+ ψi), понимают такой постоянный токI, который при протекании через резистор с сопротивлениемR(рис. 2.2) выделяет такое же количество тепла, что и синусоидальный ток за время, равное одному периоду синусоидального тока:

.

Откуда

Действующие значения ЭДС и напряжения определяются аналогичными соотношениями:

, ,.

Большинство систем измерительных приборов измеряют действующие значения токов и напряжений, поэтому расчеты в цепях синусоидального тока чаще всего выполняют по действующим значениям.

Изображение синусоидальных величин векторами и комплексными числами

Синусоидальные ЭДС, напряжения и токи, имеющие частоту ω, можно изображать векторами, вращающимися с угловой скоростью, равной ω, причем длина вектора определяется в соответствующем масштабе амплитудой ЭДС, напряжения или тока.

Пусть мы имеем две синусоидальные ЭДС

и .

Изобразим их в виде векторов в момент времени равный нулю (рис. 2.3). Начальные фазы этих синусоидальных ЭДС откладываются от горизонтальной оси против часовой стрелки, если они положительны, и по часовой стрелке, если они отрицательны. Длины векторов равны соответствующим амплитудным значениям.

Найдем ЭДС е(t), равную сумме ЭДС е1 и е2. Тогда эта ЭДС будет изображаться вращающимся вектором, равным геометрической сумме векторов, изображающих ЭДС е1и е2.

В любой момент времени взаимное расположение этих вращающихся векторов будет оставаться неизменным, поэтому достаточно построить вектора в момент времени равный нулю, и все операции выполнять над ними.

Совокупность векторов, характеризующих процессы, происходящие в той или иной цепи синусоидального тока, и построенных с соблюдением правильной ориентации их относительно друг друга по фазе для момента времени равного нулю, называют векторной диаграммой.

Так как обычно мы интересуемся действующими значениями синусоидальных функций, которые в раз меньше их амплитуд, то целесообразно на векторной диаграмме длину векторов выбирать равной, в избранном масштабе, действующим значениям ЭДС, напряжений или токов. На рис. 2.4 изображена векторная диаграмма напряжения и тока, причем ток отстает от напряжения на угол φ, который на векторной диаграмме всегда показывается стрелкой, направленной от вектора тока к вектору напряжения.

Какую-либо синусоидальную функцию, например,

можно изобразить вектором (рис. 2.5) на комплексной плоскости или записать в виде комплексного числа в показательной форме ,

где - модуль комплексного числа, равный действующему значению синусоидальной функции, который на векторной диаграмме соответствует длине вектора в выбранном масштабе напряжений;

ψ – аргумент комплексного числа, соответствующий начальной фазе синусоидальной функции, которая на комплексной плоскости откладывается от положительного направления оси действительных чисел;

j=- мнимое число.

Комплексная величина в соответствии с формулой Эйлера может быть записана также в тригонометрической и алгебраической формах записи:

где - действительная часть комплексного числа;

- мнимая часть комплексного числа.

Для обратного перехода от алгебраической к показательной форме записи необходимо найти модуль этого комплексного числа с помощью теоремы Пифагора (рис. 2.4) и аргумент путем определения тангенса соответствующего угла:

, .

Полностью все формы записи комплексной величины и связь между ними можно записать: