
- •Worldwide Technical Support and Product Information
- •National Instruments Corporate Headquarters
- •Worldwide Offices
- •Important Information
- •Warranty
- •Copyright
- •Trademarks
- •WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
- •Contents
- •About This Manual
- •Conventions
- •Related Documentation
- •Calling Code in Various Platforms
- •Characteristics of the Two Calling Approaches
- •Details of Call Library Function
- •Details of a CIN
- •Calling Shared Libraries
- •Figure 2-1. Call Library Function Dialog Box
- •Calling Conventions (Windows)
- •Parameters
- •Calling Functions That Expect Other Data Types
- •Building a Shared Library (DLL)
- •Task 1: Build the Function Prototype in LabVIEW
- •Task 2: Complete the .c File
- •Required Libraries
- •Task 3: Build a Library Project in an External IDE
- •Figure 2-2. Creating a Project in Visual C++
- •Figure 2-3. Setting the Use run-time library control, Microsoft Visual C++
- •Gnu C or C++ Compilers on Solaris, Linux, or HP-UX
- •Metrowerks CodeWarrior on Power Macintosh
- •Calling External APIs
- •Common Pitfalls with the Call Library Function
- •Incorrect Function Name
- •Data Types
- •Constants
- •Calling Conventions
- •Example 1: Call a Shared Library that You Built
- •Configuration of Call Library Function
- •Create Front Panel
- •Create the Block Diagram
- •Example 2: Call a Hardware Driver API
- •Figure 2-4. VI That Calls Hardware
- •Example 3: Call the Win32 API
- •Table 2-1. Mapping Win32 Data Types to Standard C Data Types
- •Table 2-2. Mapping Win32 Data Types to LabVIEW Data Types
- •Constants
- •Table 2-3. Selected Constants for MessageBox
- •Figure 2-5. Combining Function Constants in LabVIEW
- •Determining the Proper Library and Function Name
- •Unicode Versions and ANSI Versions of Functions
- •Configuring a Call to the Win32 API
- •Figure 2-6. Configuring Call Library Function to call the Win32 API
- •Figure 2-7. Block Diagram for a Call to the Win32 API
- •Figure 2-8. Running a LabVIEW Call to the Win32 API
- •Additional Examples of LabVIEW Calls to DLLs
- •Debugging DLLs and Calls to DLLs
- •Troubleshooting the Call Library Function
- •Troubleshooting your DLL
- •Troubleshooting Checklist
- •Module Definition Files
- •Array and String Options
- •Arrays of Numeric Data
- •String Data
- •Figure 2-9. The LabVIEW String Format
- •Figure 2-10. The Pascal String Format
- •Figure 2-11. The C String Format
- •Array and String Tip
- •Supported Languages
- •Macintosh
- •Microsoft Windows
- •Solaris, Linux, and HP-UX
- •Resolving Multithreading Issues
- •Making LabVIEW Recognize a CIN as Thread Safe
- •Using C Code that is Thread Safe
- •Creating a CIN
- •Step 1. Set Up Input and Output Terminals for a CIN
- •Input-Output Terminals
- •Output-Only Terminals
- •Step 2. Wire the Inputs and Outputs to the CIN
- •Step 3. Create a .c File
- •Step 4. Compile the CIN Source Code
- •Compile on Macintosh
- •Microsoft Windows
- •Solaris 2.x
- •HP-UX and Linux
- •gcc Compiler
- •Step 5. Load the CIN Object Code
- •LabVIEW Manager Routines
- •Pointers as Parameters
- •Debugging External Code
- •DbgPrintf
- •Windows
- •UNIX
- •Passing Parameters
- •Parameters in the CIN .c File
- •Passing Fixed-Size Data to CINs
- •Scalar Numerics
- •Scalar Booleans
- •Refnums
- •Clusters of Scalars
- •Return Value for CIN Routines
- •Examples with Scalars
- •Creating a CIN That Multiplies Two Numbers
- •Passing Variably Sized Data to CINs
- •Alignment Considerations
- •Arrays and Strings
- •Paths
- •Clusters Containing Variably Sized Data
- •Resizing Arrays and Strings
- •SetCINArraySize
- •NumericArrayResize
- •Examples with Variably Sized Data
- •Concatenating Two Strings
- •Working with Clusters
- •Manager Overview
- •Basic Data Types
- •Scalar
- •char
- •Dynamic
- •Memory-Related
- •Constants
- •Memory Manager
- •Memory Allocation
- •Memory Zones
- •Using Pointers and Handles
- •File Manager
- •Identifying Files and Directories
- •Path Specifications
- •File Descriptors
- •File Refnums
- •Support Manager
- •CIN Routines
- •Data Spaces and Code Resources
- •One Reference to the CIN in a Single VI
- •Loading a VI
- •Unloading a VI
- •Loading a New Resource into the CIN
- •Compiling a VI
- •Running a VI
- •Saving a VI
- •Aborting a VI
- •Multiple References to the Same CIN in a Single VI
- •Multiple References to the Same CIN in Different VIs
- •Single-Threaded Operating Systems
- •Multithreaded Operating Systems
- •Code Globals and CIN Data Space Globals
- •Examples
- •Memory Manager Functions
- •Support Manager Functions
- •Mathematical Operations
- •ASCIITime
- •AZCheckHandle/DSCheckHandle
- •AZCheckPtr/DSCheckPtr
- •AZDisposeHandle/DSDisposeHandle
- •AZDisposePtr/DSDisposePtr
- •AZGetHandleSize/DSGetHandleSize
- •AZHandAndHand/DSHandAndHand
- •AZHandToHand/DSHandToHand
- •AZHeapCheck/DSHeapCheck
- •AZHLock
- •AZHNoPurge
- •AZHPurge
- •AZHUnlock
- •AZMaxMem/DSMaxMem
- •AZMemStats/DSMemStats
- •AZNewHandle/DSNewHandle
- •AZNewHClr/DSNewHClr
- •AZNewPClr/DSNewPClr
- •AZNewPtr/DSNewPtr
- •AZPtrAndHand/DSPtrAndHand
- •AZPtrToHand/DSPtrToHand
- •AZPtrToXHand/DSPtrToXHand
- •AZRecoverHandle/DSRecoverHandle
- •AZSetHandleSize/DSSetHandleSize
- •AZSetHSzClr/DSSetHSzClr
- •BinSearch
- •BlockCmp
- •Cat4Chrs
- •ClearMem
- •CPStrBuf
- •CPStrCmp
- •CPStrIndex
- •CPStrInsert
- •CPStrLen
- •CPStrRemove
- •CPStrReplace
- •CPStrSize
- •CToPStr
- •DateCString
- •DateToSecs
- •FAddPath
- •FAppendName
- •FAppPath
- •FArrToPath
- •FCopy
- •FCreate
- •FCreateAlways
- •FDepth
- •FDirName
- •FDisposePath
- •FDisposeRefNum
- •FEmptyPath
- •FExists
- •FFlattenPath
- •FFlush
- •FGetAccessRights
- •FGetDefGroup
- •FGetEOF
- •FGetInfo
- •FGetPathType
- •FGetVolInfo
- •FileNameCmp
- •FileNameIndCmp
- •FileNameNCmp
- •FIsAPath
- •FIsAPathOfType
- •FIsAPathOrNotAPath
- •FIsARefNum
- •FIsEmptyPath
- •FListDir
- •FLockOrUnlockRange
- •FMakePath
- •FMClose
- •FMOpen
- •FMove
- •FMRead
- •FMSeek
- •FMTell
- •FMWrite
- •FName
- •FNamePtr
- •FNewDir
- •FNewRefNum
- •FNotAPath
- •FPathCmp
- •FPathCpy
- •FPathToArr
- •FPathToAZString
- •FPathToDSString
- •FPathToPath
- •FRefNumToFD
- •FRefNumToPath
- •FRelPath
- •FRemove
- •FSetAccessRights
- •FSetEOF
- •FSetInfo
- •FSetPathType
- •FStrFitsPat
- •FStringToPath
- •FTextToPath
- •FUnFlattenPath
- •FVolName
- •GetALong
- •HexChar
- •HiByte
- •HiNibble
- •IsAlpha
- •IsDigit
- •IsLower
- •IsUpper
- •LoByte
- •Long
- •LoNibble
- •LStrBuf
- •LStrCmp
- •LStrLen
- •LToPStr
- •MilliSecs
- •MoveBlock
- •NumericArrayResize
- •Offset
- •PPStrCaseCmp
- •PPStrCmp
- •Printf
- •PStrBuf
- •PStrCaseCmp
- •PStrCat
- •PStrCmp
- •PStrCpy
- •PStrLen
- •PStrNCpy
- •PToCStr
- •PToLStr
- •QSort
- •RandomGen
- •SecsToDate
- •SetALong
- •SetCINArraySize
- •StrCat
- •StrCmp
- •StrCpy
- •StrLen
- •StrNCaseCmp
- •StrNCmp
- •StrNCpy
- •SwapBlock
- •TimeCString
- •TimeInSecs
- •ToLower
- •ToUpper
- •Unused
- •Word
- •Glossary

Chapter 6 Function Descriptions
AZHUnlock
MgErr AZHUnlock(h);
Purpose
Unlocks the memory referenced by the application zone handle h so it can be moved. This means that the memory manager can move the block of memory to which the handle refers if other memory operations need space.
Parameters
Name |
Type |
Description |
|
|
|
|
|
|
h |
UHandle |
Application zone handle you want to unlock. |
|
|
|
Return Value
mgErr, which can contain the following errors:
NoErr |
No error. |
mZoneErr |
Handle or pointer not in specified zone. |
Using External Code in LabVIEW |
6-22 |
www.ni.com |

Chapter 6 Function Descriptions
AZMaxMem/DSMaxMem
int32 AZMaxMem(); int32 DSMaxMem();
Purpose
Returns the size of the largest block of contiguous memory available for allocation.
Return Value
int32, the size of the largest block of contiguous memory available for allocation.
© National Instruments Corporation |
6-23 |
Using External Code in LabVIEW |

Chapter 6 Function Descriptions
AZMemStats/DSMemStats
void AZMemStats(MemStatRec *msrp); void DSMemStats(MemStatRec *msrp);
Purpose
Returns various statistics about the memory in a zone.
Parameters
Name |
Type |
Description |
|
|
|
|
|
|
msrp |
MemStatRec |
Statistics about the zone's free memory in a |
|
|
MemStatRec structure. Refer to the Pointers |
|
|
as Parameters section in Chapter 3, CINs, |
|
|
for more information about using this |
|
|
parameter. |
|
|
|
A MemStatRec structure is defined as follows: typedef struct {
int32 totFreeSize, maxFreeSize, nFreeBlocks; int32 totAllocSize, maxAllocSize;
int32 nPointers, nUnlockedHdls, nLockedHdls; int32 reserved [4];
}
The free memory in a zone consists of a number of blocks of contiguous memory. In the MemStatRec structure, totFreeSize is the sum of the sizes of these blocks, maxFreeSize is the largest of these blocks (as returned by XXMaxMem), and nFreeBlocks is the number of these blocks.
Similarly, the allocated memory in a zone consists of a number of blocks of contiguous memory. In the MemStatRec structure, totAllocSize is the sum of the sizes of these blocks and maxAllocSize is the largest of these blocks.
Because there are three different varieties of allocated blocks, the numbers of blocks of each type is returned separately.
nPointers (int32) is the number of pointers, nUnlockedHdls (int32) is the number of unlocked handles, and nLockedHdls (int32) is the number of locked handles. Add these three values together to find the total number of allocated blocks.
The four reserved fields are reserved for use by National Instruments.
Using External Code in LabVIEW |
6-24 |
www.ni.com |

Chapter 6 Function Descriptions
AZNewHandle/DSNewHandle
UHandle AZNewHandle(size);
UHandle DSNewHandle(size);
Purpose
Creates a new handle to a relocatable block of memory of the specified size. The routine aligns all handles and pointers in DS to accommodate the largest possible data representations for the platform in use.
Parameters
Name |
Type |
Description |
|
|
|
|
|
|
size |
int32 |
Size, in bytes, of the handle you want to |
|
|
create. |
|
|
|
Return Value
A handle of the specified size. If an error occurs, this function returns NULL.
© National Instruments Corporation |
6-25 |
Using External Code in LabVIEW |