
- •В.Д. Евсеев физика разрушения горных пород при бурении нефтяных и газовых скважин
- •Введение
- •1. Горная порода – объект разрушения
- •Характеристика сил связи в структуре горной породы
- •1.2. Классификация горных пород академика Сергеева е.М.
- •1.3. Твердая компонента горной породы
- •1.4. Жидкая компонента горной породы
- •Сравнение физических свойств керосина и воды
- •1.5. Пористость и проницаемость горных пород
- •1.6. Горная порода как многокомпонентная система
- •2. Горная порода – сплошная среда
- •2.2. Инвариантные соотношения для напряжений и деформаций при различных напряженных состояниях
- •Значения обобщенных напряжений
- •Значения обобщенных деформаций
- •2.3. Энергия изменения формы и объёма при деформировании
- •2.4. Геометрическая интерпретация напряженного состояния
- •2. Реология горных пород
- •3.1. Аксиомы реологии. Виды идеальных деформаций
- •Реологическая диаграмма жестко-пластического тела Сен-Венана приведена на рис. 7.
- •3.2. Сложные реологические тела
- •3.3. Особенности ползучести горных пород
- •3.4. Реологические параметры, модули деформации и их определение
- •Величина коэффициента сжимаемости минералов, горных пород и жидкостей
- •4. Теории прочности
- •Сравнение прочности горных пород при различных испытаниях
- •4.1. Механическая теория прочности Кулона
- •4.2. Механическая теория прочности Кулона–Навье
- •4.3. Энергетическая теория прочности Гриффита а.А.
- •4.4. Кинетическая теория прочности
- •5. Деформационное поведение горных пород при различных напряженных состояниях
- •5.1. Развитие разрушения и определение прочности при одноосном растяжении и сжатии образцов горных пород
- •5.2. Разрушение образцов горных пород при трехосном сжатии
- •6. Особенности механического воздействия на горную породу забоя скважины при бурении
- •Число ударов m в минуту зубьев венца шарошки по горной породе забоя определяется по формуле
- •6.1. Особенности разрушения образцов горной породы при динамическом приложении нагрузки
- •6.1.2. Показатели динамических свойств горных пород. К показателям динамических свойств горных пород относят следующие:
- •Условие
- •6.2. Разрушение образцов горной породы при статическом вдавливании инденторов
- •Сфера. При контактировании сферы радиуса r с упругим полупространством образуется контактная площадка радиуса
- •Классификация горных пород по величине твердости и условного предела текучести
- •Вдавливание сферы и усеченного конического индентора. Главной особенностью вдавливания инденторов такой геометрии в горную породу является увеличение площади контакта индентора с горной породой.
- •6.3. Разрушение горной породы забоя скважины сдвигом
- •7. Энергетика дробления шлама на забое скважины и очистка забоя
- •8. Влияние параметров режима бурения и забойных условий на разрушение горных пород
- •8.1. Параметры режима бурения и показатели работы долот
- •8.2. Влияние параметров режима бурения на механическую скорость
- •8.3. Взаимосвязь параметров режима бурения и технико-экономических показателей
- •8.4. Влияние забойных условий на разрушение горных пород при бурении
- •8.4.1. Влияние гидростатического давления. Величина гидростатического давления, действующего на горную породу забоя скважины, для вязкой жидкости определяется выражением
- •Заключение
- •Список литературы
- •Содержание
- •6. Особенности механического воздействия на
- •7. Энергетика дробления шлама на забое
- •8. Влияние параметров режима бурения и
- •Физика разрушения горных пород при бурении нефтяных и газовых скважин
1. Горная порода – объект разрушения
Модель горной породы необходимо создавать в соответствии с изучаемой проблемой, т.е. сохранять в модели только те свойства горной породы, которые имеют непосредственное отношение к исследуемому вопросу. Так как нас интересует механическое разрушение горных пород, то и обращать внимание, определяя понятие «горная порода», мы будем на то, что оказывает определяющее влияние на развитие разрушения.
Горная порода – это гетерогенная система, состоящая из частиц твердой фазы, представленной минералами-диэлектриками, полупроводниками, проводниками, жидкой фазы, создающей токопроводящие каналы между частицами твердой, жидкой и газовой фаз, находящихся в порах и полостях трещин.
Характеристика сил связи в структуре горной породы
В гетерогенных системах, какими и являются горные породы, различают силовые взаимодействия как внутри фаз, так и между фазами. Эти взаимодействия между зернами твердой компоненты и внутри них определяют устойчивость горной породы к механическим воздействиям: сопротивляемость пород разрушению.
Между компонентами горной породы действуют следующие силы: силы связи химической природы, молекулярные силы, ионно-электростатические силы, капиллярные и магнитные силы.
1) Силы связи химической природы. Эти силы обусловлены электрическим воздействием между атомами и могут быть ионными и ковалентными. Образование ионных сил вызвано электроотрицательностью взаимодействующих атомов, их способностью захватывать электроны «в личное пользование». При образовании ионной силы валентные электроны от атома с меньшей электро-отрицательностью переходят к атому с большей электро-отрицательностью с образованием двух противоположно заряженных ионов, между которыми возникает связь за счет кулоновского притяжения.
Ковалентные силы между различными атомами возникают в том случае, когда происходит обобществление электрона различными атомами.
Энергия связи (количество энергии, выделяющейся при образовании данной связи между атомами) сил химической природы достигает 200 – 1200 Дж/моль. Радиус эффективного действия (3 – 4)10-10 м, т.е. эти силы являются близкодействующими.
К связям химической природы относят и водородную связь. Она возникает тогда, когда между двумя отрицательно заряженными ато-мами вещества появляется атом водорода. Такая связь характерна для водородосодержащих соединений. Энергия этой связи достигает 40 Дж/моль.
2) Молекулярные силы. Эти силы обусловлены следующими видами взаимодействия молекул:
• ориентационными, возникающими между полярными молекулами;
• индукционными, возникающими вследствие поляризации неполярных молекул в электрическом поле, создаваемом полярными дипольными молекулами;
• дисперсионными, возникающими при взаимодействии электронов молекул.
Молекулярные силы являются дальнодействующими: действуют на расстоянии нескольких тысяч ангстрем. Энергия связи этих сил достигает 0,4 – 12 Дж/моль.
При расстояниях, меньших (1 ÷ 2)·10-10 м, молекулярные силы из притягивающих становятся отталкивающими. Это вызвано взаимодействием электронных оболочек атомов.
3) Электростатические силы. Эти силы возникают вследствие появления, по той или иной причине, на поверхности минералов электрических зарядов, взаимодействующих между собой по закону Кулона. Наиболее характерны эти силы для глинистой горной породы: представляют собой взаимодействие катионов-компенсаторов, находящихся в жидкой фазе, и заряженной поверхности глинистых минералов. В глинистой горной породе заряжение поверхностей глинистого минерала происходит вследствие изоморфизма. (Изоморфизм – это способность атомов, молекул твердого тела замещаться атомами или молекулами другого тела).
4) Капиллярные силы. Своим происхождением эти силы обязаны капиллярному давлению, которое возникает из-за искривления поверхности жидкости. Возникает капиллярное давление на границе раздела жидкой и газообразной компонент горной породы.
Форма поверхности жидкости возле твердого тела (на твердом теле) определяется кривизной поверхности h = (dS/dV) / 2, где S – площадь поверхности тела, V – объём тела, и характером смачивания. Кривизна поверхности может быть положительной и отрицательной. В соот-ветствии с этим различают положительное капиллярное давление (для выпуклой поверхности) и отрицательное капиллярное давление (для вогнутой поверхности).
Величина капиллярных сил f определяется зависимостью f = 2πrγж, где r – радиус частицы, γж – поверхностное натяжение жидкости.
5) Магнитные силы. Эти силы возникают в горной породе, которая содержит ферромагнетики. Чаще всего эти силы возникают в глинистой горной породе при наличии в ней гематита, гетита, гидрометита, образующих на поверхности глинистых минералов тонкие пленки. Эти пленки обладают жестким магнитным моментом. Величина магнитных сил незначительна.
Перечисленные выше силы обеспечивают прочность адгезионного соединения разнородных минералов в структуре породы и когезионную прочность однородных минералов. Адгезия обеспечивает между двумя телами контакт определенной прочности благодаря физическим или химическим силам связи. Когезией, строго говоря, называют межатомное, межмолекулярное взаимодействие различной природы внутри отдельной фазы. Когезионным соединением является и соединение однородных тел. Следует, однако, иметь в виду, что если поверхность соединяемых однородных тел загрязнена третьим телом (адсорбированные молекулы газа, пленка жидкости и пр.), то такое соединение следует считать адгезионным.
Разрыв адгезионного соединения, разрыв однородного тела определяют адгезионную и когезионную прочности, соответственно.
Работа когезии Wк определяется затратами энергии на получение единицы площади свежей поверхности тела и равна удвоенной величине удельной свободной поверхностной энергии разрушаемого тела o:
Wк = 2o.
Появление цифры два в формуле связано с тем, что при разрыве тела возникают две свежие поверхности. Величину Wк часто называют когзионной прочностью на разрыв.
Адгезионная прочность (работа адгезии) Wа характеризует прочность адгезионного соединения и может быть выражена аналогичной по виду формулой
Wа = 2o,
где o – работа, затраченная на получение единицы свежей поверхности адгезионного соединения.