Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции.doc общее материаловедение.doc
Скачиваний:
71
Добавлен:
28.05.2015
Размер:
657.41 Кб
Скачать

Энергия связи в кристаллах

Кристалл

Ar

CH4

Алмаз

SiC

LiF

NaCl

Fe

Na

Энергия связи кДж/моль

7,5

10

750

1180

1000

750

390

110

Тип связи

Ван-дер-вальсовская

Ковалентная

Ионная

Металлическая

 В телах с менее упорядоченным или хаотичным расположением частиц, что свойственно аморфным телам, имеет место лишь местная упорядоченность, которая не распространяется дальше данной совокупности частиц. В этом случае говорят, что имеет место ближний порядок. Хаотичность расположения частиц свидетельствует о неустойчивом агрегатном состоянии системы, способном изменяться как под действием внутренних, так и внешних факторов. Аморфные тела, например, не имеют определенной точки плавления.

Каждому агрегатному состоянию соответствует определенное соотношение между потенциальной и кинетической энергиями частиц вещества. У твердых тел потенциальная энергия частиц больше кинетической. Поэтому они занимают в теле вполне определенное положение относительно других частиц и лишь колеблются около этих положений.

В газах кинетическая энергия частиц превышает потенциальную, поэтому молекулы газов всегда находятся в состоянии хаотического движения. Силы сцепления между молекулами отсутствуют, вследствие чего газ заполняет весь предоставленный ему объем.

У жидкостей соотношение между энергиями стремится к единице, т. е. частицы связаны друг с другом, но не жестко. Поэтому жидкости обладают текучестью, но имеют при данной температуре постоянный объем. По строению жидкости напоминают аморфные твердые тела; каждая частица жидкости окружена одинаковым количеством ближайших соседних частиц, т.е. для жидкостей характерен «ближний порядок» взаимодействия частиц.

Итак, что же такое микроструктура и макроструктура? Иногда в строительном материаловедении упоминают «мезоструктуру». Обобщая имеющиеся высказывание по данному вопросу. Г.И. Горбунов справедливо, по нашему мнению, предлагает различать только микроструктуру и макроструктуру строительных материалов. Микроструктура – это структура материала, которую можно рассматривать, изучать с помощью оптических, электронных, рентгеновсих и пр. приборов; Макроструктура – это структура материала, которую можно видеть невооруженным глазом. Традиционно микроструктуру подразделяют на кристаллическую, аморфную и аморфно-кристаллическую.    

Микроструктура

Изложенное выше позволяет дать следующее определение понятию «кристаллическая структура». Кристаллическая структура – это такая структура, которой свойственно упорядоченное расположение частиц в строго определенных точках пространства, которые образуют кристаллическую решетку. Эта упорядоченность позволяет экспериментально и теоретически полностью изучить структуру твердого состояния и явления, связанные с природой сил взаимодействия в кристаллических телах.

Для каждого кристалла характерна анизотропность и резко выраженная температура перехода в жидкое состояние. Кристаллы характеризуются внешней симметрией в расположении частиц, которая выражается наличием трех элементов симметрии: центра, оси и плоскости симметрии. Центр симметрии – точка, делящая пополам все соединительные между внешними поверхностями кристалла прямые линии, проведенные через нее по любому направлению. Плоскость симметрии делит кристалл на две части, относящиеся друг к другу, как предмет к своему зеркальному отражению. Ось симметрии – это такая линия, при повороте вокруг которой на определенный угол получается полное совпадение нового положения с прежним. Чем больше элементов симметрии, тем выше внешняя симметрия кристалла. Идеально симметричной фигурой является шар.

В настоящее время все многообразие кристаллических форм по сочетанию элементов симметрии (сингонии) сводится к семи типам: правильная (кубическая), тригональная, гексагональная, тетрагональная, ромбическая, моноклинная и триклинная. В таблице 3.2. приведена классификация кристаллов по сингонии.

Кристаллы низшей сингонии характеризуются меньшей симметрией; кристаллы  более высокой категории сингонии имеют более совершенную форму кристаллической решетки и, следовательно, являются более устойчивыми в определенных условиях существования.

Многим веществам в кристаллическом состоянии характерен полиморфизм, т.е. способность вещества существовать в виде нескольких кристаллических структур с различными свойствами. Полиморфизм простых веществ называется аллотропией.  Известны полиморфные модификации углерода (алмаз, графит), кварца (α-кварц, β-кварц), железа, вольфрама и др.

Если два разных вещества имеют одинаковую кристаллическую структуру, похожую химическую формулу и не очень сильно различаются по размеру составляющих их частиц, то они могут образовывать смешанные кристаллы. Такие вещества называют изоморфными, их способность образовывать смешанные кристаллы – изоморфизмом. Пример: сходные по составу и структуре, но разные по свойствам являются кристаллы каолинита Al2O3.2SiO2.2H2O, пирофиллита Al2O3.4SiO2.2H2O и монтмориллонита Al2O3.4SiO2.3H2O.

Реальные кристаллы. В свей практической деятельности мы имеем дело с реальными кристаллми, которые отличаются от идеальных нарушениями (дефектами) кристаллической решетки, образующимися в результате изменения равновесных условий роста кристаллов, захвата примесей при кристаллизации, а также под влиянием различного рода внешних воздействий.          

 

                   Макроструктура

Макроструктура – это видимая невооруженным глазом или при небольшом увеличении (до 6 раз) внутренняя или поверхностная часть материала. В строительном материаловедении принято различать структуры поверхностного и внутреннего слоев. Основные характеристики макроструктуры

Мы рассмотрим те характеристики материалов, которые не вошли в действующие стандарты. Поэтому к ним не сформулированы требования, и они, как бы, не являются свойствами строительных материалов. Но эти характеристики имеют существенное значение для общей оценки качества того или иного материала. Они также помогают повысить объективность тех или иных показателей качества, регламентированных стандартами.

 Пористость

Пористость – степень заполнения объема материала порами. Обычно выражают в %:

П = [(VестVп)/Vест].100;

Где Vест – объем твердого тела вместе с порами;

 Vп – объем твердой фазы тела.

Чаще пористость рассчитывают, исходя из кажущейся ρm и истинной ρ плотности материала:

П = (1 – ρm / ρ)100.

Пористость строительных материалов колеблется от 0 до 90-98%. Для сравнения в табл. 3.3. приведены величины пористости некоторых материалов.

Помимо объема пор на свойства материалов большое влияние оказывают геометрическая и структурная характеристики пор. К геометрической характеристике относят размер пор, их общую удельную поверхность, общий объем пор. К структурной характеристике относят форму пор (ячеистая, замкнутая, волокнистая) и характер пор (открытые, замкнутые, сообщающиеся).

Таблица 3.3. Значения пористости некоторых материалов

Наименование материала

Плотность, кг/м3

Пористость, %

истинная

кажущаяся

Гранит

2700-2800

2600-2700

0,5-1

Тяжелый бетон

2600-2700

2200-2500

8-12

Кирпич

2500-2600

1400-1800

25-45

Керамзит (зерна)

2400-2600

250-1000

60-90

Пеностекло

2350-2450

100-300

88-95

Древесина

1500-1600

400-800

45-70

Пенопласт

900-1200

20-100

90-98

 

Наиболее стройной и общей для различных видов материалов  является классификация по размеру пор:

-          макропоры > 10мкм (по Дубинину); > 0,5мкм (по Ф.М. Иванову);

-          капиллярные поры > 1мкм (по Г.И Горчакову);

-          контракционные – 1-10-2 мкм (по Горчакову);

-          поры геля – 10-2-10-4мкм (по Горчакову).

Макропоры и капиллярные поры относятся к элементам макроструктуры. Более мелкие поры – к элементам микроструктуры.

Капиллярами принято называть канальные поры, которые способны впитывать жидкость. Впитывание жидкости происходит, если так называемый капиллярный потенциал в каждой точке соприкосновения жидкости с внутренней поверхностью превышает потенциал поля тяжести.

Капиллярный потенциал зависит от величины поверхностного натяжения, радиуса капилляра, плотности жидкости, краевого угла смачивания жидкости при взаимодействии с данным материалом. Впитывание жидкости происходит, если так называемый капиллярный потенциал φк.п в каждой точке соприкосновения жидкости с внутренней поверхностью капилляра превышает потенциал поля тяжести φк.п.т Эффект впитывания тем выше, чем больше разность потенциалов, т.е. φк.п - φк.п.т → ∞.

Под капиллярным потенциалом понимают потенциальную энергию поля капиллярных сил, отнесенную к единице массы жидкости (плотности).

Для цилиндрического капилляра, один конец которого находится в воде, капиллярный потенциал в Н.м/кг определяют по формуле:

φк.п  =(2σп.н.ж).(1/r)

где:  σп.н - коэффициент поверхностно натяжения, Н/м;

ρж - плотность жидкости, кг/м3;

 г - радиус кривизны мениска, м.

Потенциал поля тяжести:  

φк.п.т = gh

где: g - ускорение свободного падения, м/с;

 h - высота капилляра, м.

При поднятии уровня жидкости в капилляре разность потенциалов уменьшается и при φк.п.т = φк.п. высота капилляра h — достигает максимума. С учетом краевого угла смачивания максимальная высота капиллярного подъема жидкости в пористом материале может быть вычислена по формуле Жюрена:

h = 2 σп.н соs/ ρж г g,

где г — условный радиус капилляра, м.

Средний радиус капилляра, т.е. поры, в которой имеет место капиллярный подсос, для различных материалов неодинаков, так как основные параметры этого процесса значительно различаются.

В стеновых материалах, где основными взаимодействующими фазами являются вода и цементный камень, верхний критический размер пор, впитывающих воду, не превышает 20 мкм, тогда как в огнеупорных материалах, работающих в среде расплавленных шлаков, этот критерий составляет - 25 мкм. В последнем случае химическое взаимодействие жидкой и твердой фаз уменьшает потенциал капиллярного подсоса.

В стеновых материалах с учетом изменения фазового состояния воды макропоры (по А.С. Беркману и И.Г. Мельниковой — свыше 200 мкм) являются резервными, а микропоры (<0,05 мкм) - безопасными. Но, по В.М. Москвину и Г.И. Горчакову, опасный интервал размера пор несколько уже, так как при уменьшении радиуса капилляра вода в нем замерзает при более низкой температуре.

Интересно отметить, что значения нижних критических радиусов капилляров при заполнении водой и силикатными расплавами практически одинаковы и равны примерно 0,1 мкм. Это указывает на близкие значения длин свободного пробега молекулы воды при тем температуре 20°С и силикатных расплавов при 1500°С.

Однако, практически, в поры размером ниже 5 мкм шлаки не проникают. По-видимому, это объясняется увеличением вязкости в тонких капиллярах как в результате изменения состава шлаков (коррозия), так и под влиянием пристеночного эффекта.

Таким образом, для огнеупорных материалов опасный интервал, связанный с прониканием шлаков в капилляры, находится в пределах 5.. .25 мкм (по данным К.К. Стрелова).

Исходя из вышесказанного, можно констатировать, что основная  проблема оптимизации пористой структуры материалов, в частности повышения морозостойкости для гидратационных и эксплуатационной стойкости обжиговых систем, связана с уменьшением интервала между верхним и нижним критическими радиусами капилляров. А как это осуществить? Есть два возможных варианта:

- исключение из структуры опасного интервала капиллярных пор путем создания преимущественно крупнопористой или мелко пористой структуры;

- уменьшение капиллярного потенциала системы при неизменных пористости и размерах радиусах капилляров.

Рассмотрим первый вариант. Крупнопористая структура (макропоры) без учета некоторых факторов может отвечать требованиям к акустическим, теплоизоляционным и некоторым видам стеновых материалов, а мелкопористая (микропоры) — материалам для несущих, гидротехнических и других конструкций. Однако есть некоторые нюансы. Создание крупнопористой, а значит, высокопористой структуры влечет за собой резкое снижение прочностных характеристик изделий. Получение же плотной структуры с пористостью ниже 10% представляет в настоящее время серьезную проблему, особенно для гидратационных материалов.

Второй вариант. Уменьшение капиллярного потенциала системы теоретически возможно лишь за счет снижения сил поверхностного натяжения, т.е. снижения поверхностной энергии твердой фазы, и увеличения краевого угла смачивания контакта “жидкость — твердая фаза”, т.е. снижения эффекта смачиваемости.

Следует заметить, что оба эти фактора взаимозависимы, и поэтому для снижения капиллярного потенциала φк.п гидратационных систем ограничиваются снижением смачиваемости за счет применения гидрофобных добавок, а для обжиговых материалов, в частности огнеупоров, используют так называемые “спеки”, или специальные покрытия поверхности твердой фазы тонким твердым высокоогнеупорным слоем с низким значением поверхностной энергии, так как снизить смачиваемость самих шлаков практически невозможно Кроме того, для снижения φк.п в технологии огнеупоров используют различного рода “присадки”, вызывающие адсорбционный эффект.