
- •5.ЭлЕменты линейной алгебры: системы линейных
- •2.Определители. Базис в пространстве.
- •4.Аналитическая геометрия в прстранстве: плоскость
- •1.Аналитическая геометрия на плоскости: простейшее
- •2.Определители. Базис в пространстве.
- •3.Линейны операции над векторами, проекция вектора
- •4.Аналитическая геометрия в прстранстве: плоскость
- •1.Аналитическая геометрия на плоскости: простейшИе
- •2.Определители. Базис в пространстве.
- •3.ЛинейныЕ операции над векторами, проекция вектора
- •4.Аналитическая геометрия в прстранстве: плоскость
- •5.Элименты линейной алгебры: системы линейных
- •1.Аналитическая геометрия на плоскости: простейшИе
- •2.Определители. Базис в пространстве.
- •3.Линейны операции над векторами, проекция вектора
- •4.Аналитическая геометрия в прстранстве: плоскость
- •5.Элименты линейной алгебры: системы линейных
- •1.Аналитическая геометрия на плоскости: простейшИе
- •2.Определители. Базис в пространстве.
- •3.Линейны операции над векторами, проекция вектора
- •4.Аналитическая геометрия в прстранстве: плоскость
- •5.ЭлЕменты линейной алгебры: системы линейных
- •1.Аналитическая геометрия на плоскости: простейшИе
- •2.Определители. Базис в пространстве.
- •3.Линейны операции над векторами, проекция вектора
- •4.Аналитическая геометрия в прстранстве: плоскость
- •5.ЭлЕменты линейной алгебры: системы линейных
4.Аналитическая геометрия в прстранстве: плоскость
и прямая в пространстве; поверхности второго порядка
31. Составить уравнение плоскости, проходящей через точкуМ0 (1,0,-1) параллельную плоскости:3х+у-2z-3=0.
32. Составить уравнение плоскости,
проходящей через точку М0(1,3,-2)
и прямую:.
33. Составить уравнение плоскости,
проходящей через прямую
перпендикулярно плоскостих-2у+3z-3=0.
34. Составить уравнение плоскости, которая проходит через точку М0(-1;2;3)перпендикулярно двум плоскостям:х-3у-3z+5=0, 2х+у+3z-4=0.
35. Найти расстояние dточкиМ0(5;-4;2) до плоскости4х+7у+4 z+18=0.
36. Найти параметрические уравнения прямой , заданной как линия пересечения двух плоскостей 2х-у+3z-10=0 и 3х+2у-z+5=0.
37. Даны вершины треугольника А(3;2;1) В(6;2;5), С (5;3;3). Составить канонические уравнения биссектрисы его внутреннего угла при вершинеА.
38. Составить каноническое уравнение прямой, проходящей через точку
М0(-2;3;-1)параллельной
прямой:.
39. Найти координаты точки пересечения прямой : х=t+2, у=2t+3, z=2t+4и плоскости 2х-3у+z-1=0.
40. Найти проекцию точки Р (1;1;2) на
прямую.
41. Найти координаты точки Q, симметричной точкеР(5;2;1) относительно плоскости:х+2у+2z-20=0.
42. Найти координаты точки Qсимметричной точкеР(4;-1;1) относительно
прямой.
43. Вычислить расстояниеd
точкиМ0(1;3;1)от прямой.
44. Составить канонические уравнения
прямой l, которая
проходит через точкуМ0(3;0;-3)и пересекает прямыеl1:,l2:
используя последовательность действий:
а) найти координаты нормального вектора
П1(П1х,П1у,П1z),к плоскостиП1проходящей,
через точкуМ0и прямуюl1, взяв
векторное произведение,
где
(3,-2,-1)
направляющий вектор прямой l1. М1(5,-1,-4).
точка прямой l1.(см. задачу № 32)
б) найти координаты нормального
вектораП2(П2х,П2у,П2z),к плоскостиП2проходящей,
через точкуМ0и прямуюl2, взяв
векторное произведение,
где
(2,3,-5)
направляющий вектор прямой l2 М2(8,1,-5).
точка прямой l2.(см. задачу № 32)
в) найти координаты направляющего
вектора
(ах,ау,аz)искомой прямойl, взяв
векторное произведение
.
г) составить канонические уравнения
искомой прямой l,
проходящей через точкуМ0
в направление вектора.
45. Даны координаты вершин пирамиды А1(4;7;4), А2(3;7;3), А3(2;5;5), А4(3;3;8).
Найти: 1) угол между ребрами А1А2иА1А4;
2) угол между ребром А1А4; и граньюА1А2А3;
3) уравнение прямой А1А2;
4) уравнение плоскости А1А2А3;
5) уравнение высоты, опущенной из вершины А4на граньА1А2А3.
46. Построить эскиз тела, ограниченного поверхностями:
а) z=4-х2;z=0; х=0; у=0; 2х+у=4(х≥0) б) z= х2+у2. Z=0; х=0;у=х2; у=1.
5.ЭлЕменты линейной алгебры: системы линейных
уравнений; матрицы; линейное векторное пространство;
линейные операторы
47. Решить систему линейных уравнений методом Гаусса
х1+х2+х3+2х4=0,
х1+2х2+х3-2х4=0,
х1+2х2+2х3-3х4=0,
48. Найти все вещественные матрицы,
перестановочные с матрицей
.
49. Найти матрицу D=3CА-1-2СTВ, где
50. Найти ранги матриц: а)
б)
.
51. Дана система линейных уравнений
х1+х2-х3-=1,
4х1-х2-2х3=7,
2х1-х2-х3=4,
Доказать ее совместимость и решить тремя способами:
1) методом Гаусса,
2) средствами матричного исчисления,
по формулам Крамера,
52. Является ли вещественными линейными пространствами:
а) множество всех вещественных матриц
2-го порядка вида
,
б) множество всех вещественных матриц
2-го порядка вида
,
53. Найти все значения
,
при которых вектор
линейно выражается через векторы
,
если
=(2;3;
);
=(1;2;3);
=(2;-1;1),
=(1;1;2).
54. Выяснить, является ли данная система векторов из R4 линейно зависимой ?
=(1;2;-1;-1);
=(2;-1;-1;2),
=(0;1;2;2),
=(1;3;-1;-1).
55. Выяснить геометрический смысл действия
линейных операторов, данных в пространстве
,
матрицы которых относительно некоторого
прямоугольного базиса имеют вид: а)
б)
56. В пространстве V3задан оператортак:
,
где
,
.Проверить
линейность оператора
и найти его матрицу в базисе (
).
57. В пространстве
линейный оператор
зеркально отражает векторы относительно
прямой
,
а линейный оператор
ортогонально проецирует векторы на
плоскость
.Найти матрицу оператора
в
базисе (
).
58. Найти собственные значения и собственные
векторы линейного преобразования,
заданного в некотором базисе матрицей
ОТВЕТЫ:
1. 4х+3у-21=0, х+у=0, 3х+2у-21=0.2.(5,-1).(4,6),
2х+у-14=0,3.х+у=7, х-у=7, х+у=-7;х-у=-7.4.х-2у-14=0,
3х-у-22=0, (6,-4)5.(6;-3) и (7;-1).6.7х-2у-38=0,
5х+у-49=0, 2х-3у-23=0.7.d=6.
8.5кв. ед.. 9. 1) окружность с центром
в полюсе и радиусом5; 2) луч, выходящий
из полюса, наклоненный к полярной оси
под углом
3)
прямая, перпендикулярная к оси, отсекающая
на ней, считая от полюса, отрезок а=3;
4) прямая расположенная в верхней
полуплоскости, параллельная полярной
оси, отстоящая от нее на расстоянии7;5) окружность с центром С(
,r=3)
и радиусом3; 6) окружность с центром
С(
,r=11) и радиусом11.
10. Эллипс: С(3;-1),
,
а=4, в=
,
.
11.
.
12. Гипербола:
.13.в)парабола:у2=-5(х-1,25). 14. а)-9;
б)-15; в)14; г)-1.15.
=(2;-1;3).16.
17.а)
б)в)
(4,10,2).18.3. 19.520.
=arccos
=620031.
21. -5222.
.
23.
(-6;2;6);
.
24.S
=
,h
=
.25.
(2;-6;2).
26.±36. 27.-12. 28.
тройка правая. 29.V=22
куб.ед. 30.–18.31.2х+у-2z-5=0.
32.3х-z-5=0. 33.Х-у-z+1=0.34.6х-9у-7z+9=0.35.d=2. 36.Х=-5t,
у=11t-1, z=7t+3.
37.
.
38.
.
39.(1,1,2).40.(2,3,4).41.(7,6,5).42.(6,3,-3).43.d=3.44.
45. 1)arccos
=1110381.
2)arccos
.
3)
4)
-2х+3у+2z-21=0. 5)
47. Х=С
,
где С
.48.
,гдеа,а,в
.49.
,
.
50. а)r=2, б) )r=3.51. х1=1, х2=-1, х3=-1.
52. а)да, б)нет.53.
.54.да. 55. а)поворот на угол
по
часовой стрелке вокруг оси, проходящей
через начало координат и образующей с
координатными осями равные острые углы;
, б)отражение относительно осиОх,
56. Оператор
линейный;
,
его матрица в базисе (
).57.
А=
,
В=
,
АВ=
.
58. Собственные значения:
=1,
=6,
=-6.
Собственные векторы:
,
,
где
С
,
.
ВАРИАНТ 14