Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Генетика человека методы.doc
Скачиваний:
9
Добавлен:
28.05.2015
Размер:
162.3 Кб
Скачать

1.2 Наследования признаков

Для понимания закономерностей наследования признаков — порядка их распределения и комбинации в потомстве большое значение имело выяснение еще одного свойства генов — их способности к рекомбинации (обмен генами), т. е. перемещению из одной гомологичной хромосомы в другую. Это явление, изученное впервые Т. Морганом, обусловлено тем, что гомологичные хромосомы в созревающих половых клетках тесно сближаются (конъюгируют) и перекрещиваются. После этого хромосомы разъединяются, отдаляются друг от друга, а затем в процессе деления — мейоза (размножение) расходятся по разным клеткам.

Места перекреста конъюгирующих хромосом (хиазмы) отчетливо видны под микроскопом. Т.е. каждая хромосома после конъюгации и перекрещивания оказывается частично обновленной; она несет в себе часть наследственного материала другой хромосомы. В результате различные зрелые половые клетки оказываются разнокачественными в генетическом отношении. В этом сущность процесса перекомбинирования генетического материала. Процесс этот является одним из важных источников разнообразия организмов при скрещивании, т. к. рекомбинация генов влечет за собой различную комбинацию признаков у потомков (комбинативная изменчивость).

Изучение сцепления и рекомбинации еще в те времена, когда не было данных о тонкой структуре хромосом и молекулярной структуре генов, позволило составить хромосомные карты, определить место гена в хромосоме, рассчитать расстояние между ними (так называемые составление генетических карт), предсказать результаты сочетания генов, а значит, и признаков при скрещивании.

Большое значение для проявления активности генов имеют условия существования данного индивидуума. Факторы окружающей среды оказывают большое влияние на реализацию генетической программы особи. Строение и функционирование любого организма определяется не только его наследственными потенциями, но и условиями, в которых эти потенции развиваются и реализуются.

Понимание закономерностей наследования было углублено при переходе к исследованиям на молекулярном уровне. Было выяснено, что материальной основой наследственности являются молекулы дезоксирибонуклеиновой кислоты (ДНК), а в молекулах рибонуклеиновых кислот (РНК) закодирована генетическая программа лишь у некоторых вирусов (см. Нуклеиновые кислоты).

Молекулы ДНК входят в состав хромосом, они также имеются в ряде внутриклеточных органелл, находящихся в цитоплазме (митохондриях, пластидах растительных клеток и т. д.). В соответствии с этим говорят о ядерной и цитоплазматической (или внеядерной) молекуле ДНК.

Для реализации генетической программы организмы обладают способностью считывать генетическую информацию, закодированную в ДНК, в виде молекул информационных РНК (ИРНК), являющихся копиями генов. В свою очередь молекулы ИРНК, соединяясь со специальными структурами клеток — рибосомами, программируют синтез белков, а последние управляют всеми реакциями в клетках, обеспечивая жизнедеятельность организмов.

Типы наследования. Построение генетических карт позволило выяснить характер и порядок расположения многих генов в хромосомах человека, а изучение проявления у организмов доминантных и рецессивных генов дало возможность вычленить несколько типов наследования. Прежде всего, были изучены типы наследования признаков, кодируемых генами, расположенными в половых хромосомах. Важнейшей особенностью этого типа является то, что у гетерозиготного пола, несущего в каждой клетке тела две разные половые хромосомы — X и Y (например, мужские особи у человека), гены, расположенные в одной из хромосом и не имеющие партнера в другой хромосоме, будут проявляться независимо от того, доминантны они или рецессивны. Поэтому, если у матери действие болезнетворного гена, расположенного в одной из Х—хромосом, может быть подавлено доминантным геном другой Х—хромосомы, то у ее сына, получившего от нее Х—хромосому с болезнетворным геном, пусть даже и рецессивным, этот ген, тем не менее, может проявиться в виде наследственной болезни.

Примером такой болезни является гемофилия (пониженная свертываемость крови и обусловленная этим кровоточивость), при которой мальчики, получившие от матери Х—хромосому с рецессивным болезнетворным геном, заболевают, а у девочек, получивших Х—хромосому с дефектным рецессивным геном от матери и нормальную Х—хромосому от отца, болезнь проявляться не будет. По этому же так наз. Х—хромосомному типу наследуются многие другие болезни — цветовая слепота, некоторые формы диабета и др. Точно так же признаки, кодируемые генами, расположенными в Y—хромосоме и не имеющими аналогов в Х—хромосоме, будут проявляться только у мужских особей, не передаваясь женским.

Иначе будет происходить наследование тех признаков, гены которых расположены не в половых хромосомах, а в аутосомах. В случае, если признак определяется доминантным геном, то любая хромосома матери или отца, попавшая при оплодотворении в зародышевую клетку, будет размножена во всех клетках тела развивающегося организма и даст проявление. Если речь идет о болезнетворном (патологическим) гене, то определяемый им признак проявится у любой из несущих его особей, как женской, так и мужской. В этом случае больные мальчики и девочки рождаются с одинаковой частотой. В случае брака между супругами, один из которых несет болезнетворный (патологический) аутосомно—доминантный ген, вероятность проявления заболевания у их детей составляет 50%.

Гораздо более низка вероятность наследования признаков, кодируемых рецессивными генами, располагающимися в аутосомах. Такие гены широко распространяются в популяциях с помощью открытого советским генетиком С. С. Четвериковым процесса, позже названного генетическим дрейфом. В скрытом, рецессивном, состоянии действие этих генов подавляется их доминантными партнерами, лежащими в других парных хромосомах.

Однако в случае, если каждый из родителей несет по одному одинаковому рецессивному гену, у 25% детей в каждой из парных хромосом будет иметься по паре рецессивных генов, и действие рецессивного гена проявится. Отсюда ясно, насколько вредно вступление в брак лиц, являющихся носителями одинаковых рецессивных генов. Хотя выявление такого носительства пока достаточно трудная задача, тем не менее, очевидно, что наибольшая вероятность совпадения генотипов родителей будет наблюдаться при браках между близкими родственниками. По аутосомно—рецессивному типу наследуются многие тяжелые нарушения обмена веществ, заболевания нервной системы, болезни крови и др.

Проявление наследственных признаков организма может происходить на протяжении всего периода его индивидуального развития. Известно большое число наследственных болезней, проявляющихся не в раннем возрасте, а на более поздних стадиях развития.

Так, например, ряд наследственных форм диабета, тяжелое заболевание нервной системы — хорея Гентингтона и многие другие болезни проявляются в возрасте 30—40 лет, т. е. в то время, когда носители болезнетворных генов, не подозревая о своем дефекте, вступают в брак и дают потомство, также отягощенное этим дефектом. Отсюда ясна роль развития исследований по раннему выявлению носительства патологических генов.

Важное значение имеет обусловленная действием внехромосомного генетического материала, который содержится в органеллах цитоплазмы (например, в митохондриях). Совокупность цитоплазматических генов (плазмогенов) обозначают термином «плазмой» (в отличие от совокупности хромосомных генов — генома). Плазмогены передаются потомкам гл. обр. по материнской линии, т. к. сперматозоиды, содержащие отцовские факторы, имеют ничтожно малое количество цитоплазмы, а, следовательно, и малое количество плазмогенов. Внеядерные гены размножаются чаще всего независимо от хромосомного аппарата и потому их распространение подчиняется другим закономерностям. Изучению внеядерных генов уделяется особенно большое внимание, т. к. установлено, что многие важные признаки (повышенная способность к мутациям, устойчивость к антибиотикам и др.) определяются у микроорганизмов наследственными структурами цитоплазмы.

Поскольку многие из этих микроорганизмов имеются и в теле человека (и часть из них может быть патогенной), то несомненно, что устойчивость к определенным антибиотикам будет приводить к устранению лечебного эффекта антибиотиков и многим другим нежелательным последствиям. Установлено, что у высших организмов в каждой клетке значительная часть генов сосредоточена в ДНК митохондрий, с которыми связаны энергетические процессы клеток, а также в других органеллах клетки, содержащих ДНК (например, пластидах у растений). Естественно, что проявление активности этих цитоплазматических генов играет важнейшую роль в жизнедеятельности организмов. Доказано также, что цитоплазматические гены «работают» во взаимодействии с хромосомными и, взаимодействие генома и плазмона создает сложное и координированное во времени и пространстве проявление реакций и процессов, определяющих жизнедеятельность живых организмов.

Процессы реализации наследственной информации протекают в условиях постоянного воздействия на организм внешних по отношению к нему факторов среды. Для плода человека это, прежде всего факторы материнского организма, внутри которого он развивается, и, конечно, факторы среды, действующие на организм матери, а через него и на плод.

Всякое нарушение процессов реализации генетической программы (генотипа) в совокупность признаков и свойств организма (фенотип) может привести к необратимым нарушениям — болезням, порокам развития и др.