Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Генетика человека методы.doc
Скачиваний:
9
Добавлен:
28.05.2015
Размер:
162.3 Кб
Скачать

Содержание

Введение 2

Глава I. Наследственность 3

1.1 Основные понятия и законы учения о наследственности 3

1.2 Наследования признаков 6

Глава II. Генетика человека (антропогенетика) и его здоровье 9

2.1 Генеалогические методы (методы анализа родословных) 10

2.2 Близнецовый метод 11

2.3 Цитогенетические (кариотипические) методы 14

2.4 Биохимические методы 14

2.5 Методы генетики мутагенеза 15

2.6 Популяционные методы 16

Заключение 17

Список использованных источников 18

Введение

Генетическая наследственность присущее всем организмам свойство передавать потомству характерные черты строения, индивидуального развития, обмена веществ, а следовательно, состояния здоровья и предрасположенности ко многим заболеваниям. По наследству могут быть переданы признаки не только нормального, но и измененного болезненного, патологические состояния организма. Здоровье человека, как и предрасположенность к заболеваниям, в значительной мере наследственно обусловлены. Являясь важнейшим общебиологическим свойством живого, наследственность обеспечивает многообразие форм живых существ. В то же время изменение конкретных наследственных свойств, закономерно происходящее за счет процесса изменчивости, сопряженное с процессом естественного отбора лучших форм, обеспечивает непрерывность процесса эволюции живых существ на Земле.

Наследственность возможна благодаря проявлению специфических черт устройства генетического аппарата, реализации его в процессе индивидуального развития в определенные признаки и свойства морфологические, физиологические или биохимические организации живых существ, а также передачи точного строения генетического аппарата потомкам. Выяснение закономерностей наследования - важнейшее достижение материалистической науки.

Глава I. Наследственность

1.1 Основные понятия и законы учения о наследственности

Из основополагающих принципов учения является характеристика наследственных задатков — генов как дискретных (отдельных) частиц живой материи, которые определяют признаки и свойства организма в процессе его развития. Организм получает наследственные задатки — гены — от родителей в результате полового процесса — скрещивания или деления клеток исходного организма при бесполом размножении. В клетках тела взрослого организма каждый ген имеет пару (аллель). При созревании половых клеток (гамет) аллели гена расходятся в разные гаметы. Т.е. каждая гамета несет один ген из пары.

Эта закономерность, известная под названием закона чистоты гамет, была вскрыта Г. Менделем. При оплодотворении половые клетки отца (сперматозоиды) и матери (яйцеклетки) сливаются, образуя новую клетку — зиготу, в которой для каждого из признаков имеется уже пара задатков (генов) — один отцовский, другой родителей проявляются неодинаково. Так, напр., известно, что внешний облик, детали обмена веществ, черты характера ребенка могут в большей степени соответствовать признакам одного материнский. Т.е. в будущем новом организме наследственные признаки обусловлены парой генов, полученной от обоих родителей.

Вместе с тем в организме ребенка признаки каждого из родителей. Это, как установил Г. Мендель, связано с тем, что существует два типа наследственных задатков (генов) — сильные (доминантные) и слабые (рецессивные). Признаки, определяемые доминантными генами, обязательно проявляются в процессе индивидуального развития организма, действие рецессивных генов в процессе их взаимодействия с доминантными подавляется. По предложению, Г. Менделя, доминантные факторы обозначают прописными буквами (А, В, С и т. д.), а рецессивные — строчными (а, b, с и т. д.).

Поскольку доминантный фактор А подавляет в зиготе действие рецессивного фактора а, то из этой зиготы (Г. Мендель назвал эти клетки гетерозиготными) разовьются организмы, внешний вид которых будет определяться лишь фактором А. Только в организмах, клетки которых содержат по паре рецессивных факторов а, определяемый признак имеет внешний вид (фенотип), определяемый рецессивными факторами (генами). Организмы, в клетках которых парные гены одинаковы (оба доминантные или оба рецессивные), называют гомозиготными. Если бы родители различались только по одному признаку, нетрудно представить схему сочетания признаков .

Явление доминантности широко распространено в природе (оно проявляется и в отношении наследования многих признаков у человека), однако проявление доминантности различно. В ряде случаев имеет место неполное доминирование: в фенотипе потомков частично проявляется признак как одного, так и другого родителя. Хорошо известно явление так наз. множественного аллелизма, при котором ряд генов последовательно доминирует один над другим. Признаки, наследование которых подчиняется перечисленным закономерностям, принято называть менделирующими (по имени Г. Менделя).

У человека менделирующими признаками являются, например, альбинизм (отсутствие пигментации, вызываемое рецессивным геном; встречается у всех человеческих рас с частотой 1 на 20— 30 тыс. новорожденных), цвет глаз, характер волос (курчавые или гладкие), групповые отличия по различным факторам в крови и др. Законам Менделя подчиняются и гены, обусловливающие наследственные болезни человека.

Изучение закономерностей проявления рецессивных генов у гетерозиготных организмов (Аа) имеет огромное теоретическое и практическое значение. Например, если рецессивный ген (а) определяет наследственное заболевание, то важно знать, что гетерозиготные организмы (Аа) являются носителями таких скрытых патологических генов, проявление которых в фенотипе их гомозиготных потомков (аа) влечет за собой выявление болезни. В ряде случаев рецессивный ген частично проявляет себя и в гетерозиготном организме.

У человека и у животных, таким образом, наследуется альбинизм. Если гомозиготные организмы (аа) - полные альбиносы (отсутствует пигментация кожи, волос и радужки глаз, зрение ослаблено), то гетерозиготные (Аа) - частичные альбиносы (светлая окраска кожи, волос, почти бесцветные глаза и др.).

Экспериментально изучив результаты скрещивания организмов, различающихся по одному, двум, трем и т. д. числу факторов (генов), Г. Мендель сформулировал правила наследования — возможные соотношения проявлений родительских признаков у их потомков. Г. Мендель не знал, что собой представляют наследственные факторы (гены) и где они расположены в клетках, поэтому он считал, что наследственные факторы передаются независимо друг от друга. Позднее было установлено, что гены сосредоточены в ядре клетки и располагаются по длине особых структур, названных хромосомами.

Амер. ученый Т. Морган и его ученики не только доказали связь генов с хромосомами, но и разработали метод изучения взаиморасположения генов в хромосоме в более раннем развитии. При этом в разных хромосомах может находиться разное число генов. Гены, расположенные в одной хромосоме, передаются при скрещивании сцеплено, совместно (если только не произойдет обмен участками между разными хромосомами). Выяснив, что хромосомы могут обмениваться друг с другом участками за счет перекреста — кроссинговера, Т. Морган установил, что чем дальше друг от друга находятся в хромосомах два гена, тем чаще между ними может произойти кроссинговер. Например, если расстояние между генами А и D в первой хромосоме и а и d во второй хромосоме в 2 раза больше расстояния между генами Аи В, то кроссинговер между этими хромосомами в участке А—D может произойти в 2 раза чаще, чем в участке А—В, а кроссинговер в участках А—В и В—D — в 2 раза чаще, чем в участке В—С или С—D. На этом основании Т. Морган предложил использовать частоту кроссинговера как меру расстояния между генами.

Установлено, что в клетках каждого вида организмов содержится строго определенное число хромосом и, более того, форма и строение каждой отдельной хромосомы строго постоянны. Набор хромосом клеток одного вида (кариотип) имеет одинаковый вид, этот «групповой портрет» настолько определенен, что опытный специалист по виду набора хромосом может отличить клетки одного вида от другого.

С хромосомами связано еще одно важное свойство живых клеток. Т. Морган установил, что в кариотипе каждой клетки тела есть пара хромосом, определяющих пол особи, - половые хромосомы. По форме половые хромосомы делятся на 2 группы: первые — большой длины и палочковидной формы — были названы Х-хромосомами, а вторые — небольшие, нередко загнутые крючком — Y—хромосомами. У особей женского пола животных, растений и многих насекомых в ядрах клеток тела содержится по две Х—хромосомы, у мужских особей — одна Х—хромосома и одна Y—хромосома. Открытие этого правила позволило понять, почему число особей каждого пола примерно равно. Если изобразить процесс образования половых клеток и последующего их оплодотворения, то можно увидеть, что равное число особей обоего пола всегда будет сохраняться.

Особенно важными для обоснования хромосомной теории Н. оказались случаи нарушений в структуре половых хромосом. Возможность точного математического предсказания признаков у этих аномальных форм стала лучшим способом проверки правильности хромосомной теории, при котором отклонения от нормы получили законченное объяснение. Одновременно с этим детальному изучению подверглись случаи наследования генов, располагающихся не в половых, а в остальных хромосомах, так называемых аутосомах.

Разработан специфический метод изучения хромосом, которые позволяет выявлять индивидуальные черты строения отдельных хромосом на основе использования метода их дифференциальной окраски. С этим методом связывают надежды на выявление сложных случаев обмена участками между хромосомами — так называемый транслокации (мутагенез), что важно для медицинской генетики.

Формирование отдельных признаков, как правило, происходит в результате взаимодействия большого числа генов. В процессе развития организма при формировании его признаков происходит сложное взаимодействие продуктов различных генов. Действие одних генов подавляется другими, или признак проявляется только при совместном участии нескольких генов (комплементарное действие). Лишь незначительное число генов связано с проявлением только одного конкретного признака. У большинства высших животных и человека признаки определяются одновременным участием нескольких генов (полимерия). В той же мере отдельный ген может участвовать в развитии нескольких, казалось бы, далеких признаков (плейотропия). Последнее объясняет, почему при наследственных заболеваниях, возникающих в результате повреждения лишь одного гена, наблюдаются нарушения со стороны различных органов и процессов.