Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ersoy O.K. Diffraction, Fourier optics, and imaging (Wiley, 2006)(ISBN 0471238163)(427s) PEo

.pdf
Скачиваний:
103
Добавлен:
15.08.2013
Размер:
4.84 Mб
Скачать

168

IMAGING WITH QUASI-MONOCHROMATIC WAVES

It is observed that HI ðfx; fyÞ is the normalized FT of jhðx; yÞj2, a nonnegative function. By Property 15 of the FT and Parseval’s theorem discussed in Section 2.5, HI ð fx; fyÞ is the normalized autocorrelation of Hð fx; fyÞ:

ðð

Hð fx0; fy0

ÞH ð fx þ fx0; fy þ fy0Þdfx0dfy0

1

 

 

 

HI ð fx; fyÞ ¼

1

1

 

ð10:8:2-4Þ

 

 

ðð

jHð fx; fyÞj2dfxdfy

 

 

1

 

The most important properties of the OTF are the following:

A.HI ð0; 0Þ ¼ 1

B.HI ð fx; fyÞ ¼ HI ð fx; fyÞ

C.jHI ð fx; fyÞj HI ð0; 0Þ

The last property is a consequence of Schwarz’ inequality, which states that for

any two complex-valued functions f and g,

 

 

 

 

ðð

fgdA 2 ðð j f j2dA ðð

jgj2dA

ð10:8:2-5Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with equality iff g

¼

Kf

where K is a complex constant.

 

 

 

 

 

 

 

Letting f and g be equal to Hð fx0; fy0Þ and H ð fx þ fx0; fy þ fy0Þ, respectively, and using Eq. (10.8.2-5) yields Property C above.

The coherent transfer function Hð fx; fyÞ is given by Eq. (10.8.1-2). Using this

result in Eq. (10.8.2-5) gives

ÞPðld0ð fx þ fx0ÞÞ; ld0ð fy þ fy0Þd fx0d fy0

ðð

Pðld0 fx0; ld0fy0

1

 

 

HI ð fx; fyÞ ¼

1

1

ð10:8:2-6Þ

 

 

ðð

Pðld0 fx; ld0 fyÞd fxd fy

 

 

1

 

where the fact P2 ¼ P is used in the denominator.

Incorporating a change of variables, Eq. (10.8.2-6) can be written as

ðð

P fx0

þ l

2 ; fy0

þ l 2

P fx0 l 2 ; fy0 l 2

d fx0d fy0

1

 

 

 

d0 fx

 

d0 fy

 

d0 fx

 

d0 fy

 

HI ð fx; fyÞ ¼

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

ðð Pðld0 fx0; ld0 fy0Þ

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

ð10:8:2-7Þ

FREQUENCY RESPONSE OF A DIFFRACTION-LIMITED IMAGING SYSTEM

169

The two pupil functions in the numerator above are displaced from each other by ðld0j fxj; ld0j fy. The integral equals the area of overlap between the two pupil functions. Hence, HI ðfx; fyÞ can be written as

HI ð fx; fyÞ ¼

area of overlap

ð10:8:2-8Þ

total area

where the areas are computed with respect to the scaled pupil function. The OTF is always real and nonnegative.

Note that the incoherent impulse response function jhðx; yÞj2 is similar to the power spectrum of a stationary 2-D random field. By the same token, HI ð fx; fyÞ is similar to the autocorrelation function of a 2-D stationary random field [Besag, 1974].

EXAMPLE 10.8 (a) Determine the OTF of a diffraction-limited optical system whose exit pupil is a square of width 2W, (b) Determine the cutoff frequency fc of the system.

Solution: The area of the pupil function equals 4W2. The area of overlap is illustrated in Figure 10.7.

The area of overlap is computed from Figure 10.7 as

 

 

A

 

fx; fy

 

 

8ð2W ld0j fxjÞð2W ld0j fy

fx

 

2W=ld0

ð

Þ ¼

j fyj

2W=ld0

 

 

 

 

>

 

 

 

 

j j

 

 

 

 

 

 

 

 

 

>

2

 

 

 

otherwise

 

 

 

 

 

 

 

<

0

 

 

 

When A

ð

f

Þ

is

normalized by 4W , the OTF is given by

 

 

 

 

x; fy

 

 

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HI ðfx; fyÞ ¼ tri

fx

tri

fy

 

 

 

 

 

 

 

 

 

 

 

2fc0

2fc0

 

 

where tri( ) is the triangle function, and fc0 is the cutoff frequency for coherent illumination, equal to W=ld0.

(b) It is obvious that the cutoff frequency fc is given by

fc ¼ 2 fc0

Figure 10.7. The area of overlap for the computation of the OTF of a square aperture.

170

 

 

 

 

 

 

IMAGING WITH QUASI-MONOCHROMATIC WAVES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.8. The aperture function for Example 10.9.

EXAMPLE 10.9 An exit aperture function consists of two open squares as shown in Figure 10.8.

Determine

(a)the coherent transfer function

(b)the coherent cutoff frequencies

(c)the amplitude impulse response

(d)the optical transfer function

Solution: (a) The coherent transfer function is the same as the scaled aperture function. Mathematically, the aperture function can be written as

P

x; y

 

 

rect

x 2s

;

y

 

 

rect

x þ 2s

;

y

 

 

 

 

Þ ¼

 

 

 

 

2s þ

 

 

2s

 

 

 

ð

 

 

2s

 

 

 

2s

 

 

 

Hð fx; fyÞ is given by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hð fx; fyÞ ¼ Pðld0 fx; ld0 fyÞ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

d0 fx

2s d0 fy

 

 

 

 

 

l

d0 fx

 

2s d0 fy

 

¼ rect

þ

 

 

;

l

 

 

þ rect

 

 

 

;

l

 

 

2s

 

 

 

 

2s

 

2s

 

 

2s

(b) The cutoff frequencies along the two directions are given by

 

 

 

 

 

 

 

fxc ¼

3s

;

 

fyc

¼

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ld0

 

ld0

 

 

 

 

 

 

 

 

 

 

(c) The amplitude impulse response hðx; yÞ is the inverse Fourier transform of Hð fx; fyÞ. Let a be equal to ld0s. hðx; yÞ is computed as

hðx; yÞ ¼

ðð

Hð fx; fyÞ ¼ ej2pð fxxþfyyÞdfxdfy

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

¼ 2

3s

cosð2p fxxÞdfx 2

s

 

 

ð0

ð0

cosð2p fyyÞd fy

¼

1 sinð6psxÞ sinð2psyÞ

 

 

 

p2

 

 

x

 

y

 

 

 

 

COMPUTER COMPUTATION OF THE OPTICAL TRANSFER FUNCTION

171

(d) The total area A under Hð fx; fyÞ equals 8s2. The OTF is given by

ðð1

HI ð fx; fyÞ ¼ Hð fx0; fy0ÞH ð fx0 fx; fy0 fyÞd fx0d fy0

1

A

The computation of the above integral is not trivial and can be best done by the computer.

10.9 COMPUTER COMPUTATION OF THE OPTICAL TRANSFER FUNCTION

The easiest way to compute the discretized OTF is by using the FFT. For this purpose, both hðx; yÞ; Hð fx; fyÞ and HI ð fx; fyÞ, have to be discretized. The discretized coordinates can be written as follows:

x ¼ xn1

ð10:9-1Þ

y ¼ yn2

ð10:9-2Þ

fx ¼ fxk1

ð10:9-3Þ

fy ¼ fyk2

ð10:9-4Þ

hð xn1; yn2Þ, Hð fxk1; fyk2Þ, and HI ð fxk1; fyk2Þ will

be written as

hðn1; n2Þ, Hðk1; k2Þ, and HI ðk1; k2Þ, respectively. The size of the matrices involved are assumed to be N1, by N2. In order to use the FFT, the following must be satisfied:

 

 

 

 

x fx ¼

1

 

 

ð10:9-5Þ

 

 

 

 

 

 

 

 

 

 

N1

 

 

 

 

y fy ¼

1

 

 

ð10:9-6Þ

 

 

 

 

 

 

 

 

 

 

N2

hðn1; n2Þ is approximately given by

 

 

 

 

 

 

 

 

 

 

 

 

 

hðn1; n2Þ ¼

1

h0ðn1; n2Þ

ð10:9-7Þ

 

 

 

 

 

 

K

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N1

1

 

N2

 

1

 

 

 

 

 

 

h0ðn1; n2

Þ ¼ k1

N1

k2

N2 Hðk1; k2Þej2p N1 þ N2

ð10:9-8Þ

 

 

X

 

X

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

n1k1 n2k2

 

 

¼

 

¼

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

172

IMAGING WITH QUASI-MONOCHROMATIC WAVES

and

 

 

 

K ¼ x yN1N2

ð10:9-9Þ

Hðk1; k2Þ equals Pð ld0 fxk1; ld0 fyk2Þ. N1 and N2 should be chosen such that the pupil function is sufficiently represented. For example, the nonzero portion of the pupil function must be completely covered. In order to minimize the effect of periodicity imposed by the FFT, N1 and N2 should be at least twice as large the minimum values dictated by the nonzero portion of the pupil function.

Once N1 and N2 are properly chosen, Hðk1; k2Þ is arranged as discussed in Section 4.4 so that k1 and k2 satisfy 0 k1 < N1 and 0 k2 < N2 respectively.

HI ðk1; k2Þ is approximately given by

 

 

 

 

 

 

 

 

 

 

x y N1 1 N2 1

n1k1

n2k2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 jh0ðn1; n2Þj2e j2p

 

þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N1

N2

 

 

 

HI

ð

k1

; k2

Þ ¼

 

K2

n1

¼

0

n2

¼

ð

10:9-10

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

N1

1 N2 1

 

 

 

 

 

 

 

 

 

 

 

 

X X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

k1¼0

jHðk1; k2Þj2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k2¼0

 

 

 

 

 

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

0

n2 0 jh0ðn1; n2Þj2e j2p

N1 þ N2

 

 

 

 

 

 

 

 

 

 

 

 

N11N2

n1

 

 

 

 

 

 

 

 

 

 

 

 

 

N1

 

 

1 N2

1

n1k1

n2k2

 

 

 

 

 

HI

ð

k1

; k2

Þ ¼

 

 

 

 

¼

 

¼

 

 

 

 

 

 

ð

10:9-11

Þ

 

 

 

 

 

 

 

N1 1 N2 1

 

 

 

 

 

 

 

 

 

 

X X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jHðk1; k2Þj2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k1¼0

 

k2¼0

 

 

 

 

 

 

 

 

The numerator above is the 2-D DFT of jh0ðn1; n2Þj2. HI ðk1; k2Þ above is actually shifted to positive frequencies because of the underlying periodicity. It should be shifted down again to include negative frequencies.

In summary, Hðk1; k2Þ is determined by using the pupil function. h0ðn1; n2Þ is obtained by the inverse DFT of Hðk1; k2Þ according to Eq. (10.9-8). HI ðk1; k2Þ is given by the DFT of jh0ðn1; n2Þj2 normalized by the area under jHðk1; k2Þj2.

Note that fx and fy should be chosen small enough so that h0ðn1; n2Þ is not aliased when computed by using Eq. (10.9-8). Once fx and fy are chosen, N1 and N2 are determined by considering the pupil function as discussed above.

10.9.1Practical Considerations

In studies of the OTF and MTF, ld0 is often chosen to be equal to 1, and the negative signs in the pupil function are neglected so that Hðfx; fyÞ is simply written as Pð fx; fyÞ. Normalization by the area of the pupil function may also be neglected.

ABERRATIONS

173

Another way to generate OTF is by autocorrelating the pupil function with itself.

10.10ABERRATIONS

A diffraction-limited system means the wave of interest is perfect at the exit pupil, and the only imperfection is the finite aperture size. The wave of interest is typically a spherical wave. Aberrations are departures of the ideal wavefront within the exit pupil from its ideal form. They are typically phase errors.

In order to include aberrations, the exit pupil function can be modified as

PAðx; yÞ ¼ Pðx; yÞe jkfAðx;yÞ

ð10:10-1Þ

where Pðx; yÞ is the exit pupil function without aberrations, and fAðx; yÞ is the phase error due to aberrations.

The theory of coherent and incoherent imaging developed in the previous sections is still applicable with the replacement of Pðx; yÞ by PAðx; yÞ. For example, the amplitude transfer function becomes

Hðfx; fyÞ ¼ PAð ld0 fx; ld0 fyÞ

 

 

ð10:10-2Þ

 

 

¼ Pð ld0 fx; ld0 fyÞe jkfAð ld0 fx; ld0 fyÞ

 

 

The optical transfer function can be similarly written as

 

 

 

 

 

HI ð fx; fyÞ ¼

1

 

Að fx; fyÞ

 

 

 

 

ð10:10-3Þ

 

 

 

 

 

 

 

 

 

 

 

 

ðð Pðld0 fx; ld0 fyÞdfxdfy

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

where

ðð

PA fx0 þ l 2 ; fy0 þ l

 

PA fx0 l 2 ; fy0

l 2

d fx0d fy0

Að fx; fyÞ ¼

2

 

1

 

d0 fx

 

 

d0 fy

 

d0 fx

 

d0 fy

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

ð10:10-4Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that Að fx; fyÞ is to be computed in the area of overlap of the two pupil functions shifted with respect to each other. The ordinary pupil function in this area

equals 1. Letting

denote integration in the area of overlap, Aðfx; fyÞ can be

written as

overlap

 

 

Ð Ð

 

 

 

Að fx; fyÞ ¼overlapðð

P1P2d fx0d fy0

ð10:10-5Þ

174

IMAGING WITH QUASI-MONOCHROMATIC WAVES

where

 

 

jkf f 0

 

ld0fx

; f 0

 

ld0fy

 

 

P1

¼ e

A

 

þ

ld0fx

y

þ

 

ld0

fy

 

 

x

 

2

 

 

2

 

 

P2 ¼ e jkfA fx0

 

; fy0

 

 

 

2

2

 

ð10:10-6Þ

ð10:10-7Þ

EXAMPLE 10.10 Show that aberrations do not increase the MTF.

Solution: The MTF is the modulus of the OTF. According to the Schwarz’s inequality, it is true that

 

 

 

 

ðð

 

 

 

ðð

 

 

 

j

A

f

; f

2

j

P

1j

2d f 0d f 0

j

P

2df 0d f 0

 

ð x

 

yÞj

 

x y

2j

x y

 

 

 

 

overlap

 

 

 

overlap

 

 

 

Note that

jP1j2 ¼ jP2j2 ¼ 1

in the area of overlap. Hence, jAð fx; fyÞj2 area of overlap, and

jHI ð fx; fyÞj2 jHI0ð fx; fyÞj2

where HI0ð fx; fyÞ is the optical transfer function without aberrations.

ð10:10-8Þ

ð10:10-9Þ

ð10:10-10Þ

The phase function fAðx; yÞ is often written in terms of the polar coordinates as fAðr; yÞ. What is referred to as Seidel aberrations is the representation of fAðr; yÞ as a polynomial in r, for example,

fAðr; yÞ ¼ a40r4 þ a31r3 cos y þ a20r2 þ a22r2 cos2 y þ a11r cos y ð10:10-11Þ

Higher order terms can be added to this function. The terms on the right hand side of Eq. (10.9-11) represent the following:

a40r4

:

spherical aberration

a31r3 cos y :

coma

a20r2

:

astigmatism

a22r2 cos2 y :

field curvature

a11r cos y :

distortion

10.10.1Zernike Polynomials

When the exit pupil of the optical system is circular, the aberrations present in an optical system can be represented in terms of Zernike polynomials, which are

ABERRATIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

175

Table 10.1. The Zernike polynomials.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No.

Polynomial

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2r cosðyÞ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

2r sinðyÞ

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p3ð2r2

1Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

cos 2y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

p3

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

p6ð

 

2

 

 

 

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r sin 2y

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

ð

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 r cos y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

p6

 

 

2

 

 

ð

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 r sin y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

p8 3

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

p8ð3 2

 

 

 

Þ

 

 

 

 

 

 

ð Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

r

 

 

 

 

6r

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p5ð6

 

4

Þ

2

 

 

 

ð Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

r

 

cos 3y

 

 

 

 

þ

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p8ð

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r sin 3y

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

ð

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 r cos 2y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

p8

 

 

3

 

 

ð

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 r sin 2y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

p10 4

 

2

 

 

 

 

Þ

 

 

2

 

 

 

 

ð

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12r

 

 

 

 

 

3 r cos y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

p10 4

 

2

 

 

 

 

Þ

 

 

2

 

 

 

ð

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12r

 

 

 

 

 

3 r sin y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

p12 10

 

4

 

 

 

 

 

 

2

 

þ

 

Þ

 

 

 

 

 

 

 

 

ð Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30r

 

 

 

12r

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

p12 10

 

4

 

 

 

 

 

 

2

 

þ

 

Þ

 

 

 

 

 

 

 

ð Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

cos 4y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

p7

ð

20

 

6

 

 

 

 

 

 

 

 

4

þ

 

 

 

 

 

2

 

 

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

sin 4y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

p10

 

4

 

 

 

 

ð

 

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 r cos 3y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

p10

 

4

 

 

 

ð

 

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 r sin 3y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

p12 5

 

2

 

 

 

 

Þ

 

 

3

 

 

 

 

ð

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20r

 

 

 

 

 

6 r cos 2y

 

 

 

 

 

 

 

 

 

 

 

 

20

p12 5

 

2

 

 

 

 

Þ

 

 

3

 

 

 

ð

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20r

 

 

 

 

 

6 r sin 2y

 

 

 

 

 

 

 

 

 

 

 

 

 

21

p14 15

 

4

 

 

 

 

 

 

2

 

þ

 

Þ

 

 

 

2

 

 

 

 

 

 

ð

 

Þ

 

 

 

 

 

 

 

 

 

 

 

23

 

 

 

 

ð

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

y

 

 

 

 

 

 

 

 

 

4 r

 

 

 

 

 

 

r

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

p14 15

 

4

 

 

 

 

 

 

2

 

þ

 

Þ

 

 

 

2

 

 

 

 

 

ð

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

35

 

6

 

60

 

 

4

 

þ

30

 

 

2

 

4

Þ

 

 

 

cos

ð Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

4ð35r6 60r4 þ 30r2 4Þr sinðyÞ

 

 

 

 

 

 

 

 

25

3ð70r8 140r6 þ 90r4 20r2 þ 1Þ

 

 

 

 

 

 

 

 

27

r

 

sin 5y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

p12r5 cosð5yÞ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28

 

 

 

r

 

 

 

 

 

5 r cos 4y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p12

 

5

 

 

 

ð

 

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 r sin 4y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p14 6

 

2

 

 

 

 

Þ

 

 

4

 

 

 

 

ð

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

ð

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 r

 

 

 

30r

 

 

 

10 r cos 3y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p14 6

 

2

 

 

 

 

Þ

 

 

4

 

 

 

ð

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

21

 

4

 

 

 

 

 

 

 

2

 

þ

 

 

 

 

Þ

3

 

 

 

 

 

ð

 

 

 

 

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

4ð21r4 30r2 þ 10Þr3 sinð3yÞ

 

 

 

 

 

 

 

 

 

 

 

 

 

33

ð

 

r

 

 

105r

 

þ 60r

 

10Þr sinð2yÞ

 

 

 

 

 

 

32

p18ð56r6

 

 

105r4

þ 60r2

 

10Þr2 cosð2yÞ

 

 

 

 

 

 

34

 

 

 

 

r

 

 

 

 

 

 

280r

 

 

 

 

210r

 

 

 

 

60r

 

5 r cos y

 

 

 

 

35

p18 56

 

6

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

5 r sin y

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

280r

 

 

 

 

210r

 

 

 

 

60r

 

 

 

 

 

 

p20 126

 

 

8

 

 

 

 

 

 

 

6

 

þ

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

2

þ

Þ

 

ð Þ

 

 

 

 

36

 

 

 

 

ð

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

 

 

 

 

630r

 

 

þ 560r

 

 

210r

þ 30r

1Þ

 

 

 

 

 

p20 126

 

 

8

 

 

 

 

 

 

 

6

 

þ

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

2

þ

Þ

 

ð Þ

 

 

 

 

37

 

ð

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42r 1

 

 

 

 

 

 

 

 

 

 

 

 

2772r

 

 

 

 

 

3150r 1680r

 

420r

 

 

 

p11 252

 

 

10

 

 

 

 

 

 

 

8

 

 

 

þ

 

 

 

 

 

6

 

 

 

 

 

4

 

2

 

 

 

 

þ Þ

 

p

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

8

 

6

þ

 

4

2

 

 

13 924

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

176

IMAGING WITH QUASI-MONOCHROMATIC WAVES

orthogonal and normalized within a circle of unit radius [Kim and Shannon, 1987]. In this process, the phase function fAðx; yÞ is represented in terms of an expansion in Zernike polynomials zkðr; yÞ, where r is the radial coordinate within the unit circle, and y is the polar angle.

Table 10.1 shows the Zernike polynomials for 1 k 37. Note that each polynomial is of the form

zkðr; yÞ ¼ RnmðrÞ cos my

ð10:10:1-1Þ

where n and m are nonnegative integers. Rmn ðrÞ is a polynomial of degree n and contains no power of r less than m. In addition, Rmn ðrÞ is even (odd) when m is even (odd), respectively. The representation of fAðx; yÞ ¼ fAðr; yÞ can be written as [Born and Wolf, 1969]

 

 

X

X X

fAðr; yÞ ¼ A00

1

1

1

1

þ p2

An0Rn0ðrÞ þ

 

AnmRnmðrÞ cos my ð10:10:1-2Þ

 

 

n¼2

n¼1

m¼1

 

 

The coefficients Anm are determined for finite values of n and m by least squares. In turn, fAðr; yÞ can also be written as

XK

fAðr; yÞ ¼

wkzkðr; yÞ

ð10:10:1-3Þ

 

k¼1

 

where K is an integer such as 37. The coefficients wk are found by least squares. As each successive Zernike term is normal with respect to every preceding term, each term contributes independently to the mean-square aberration. This means the rootmean square error fA due to aberrations can be written as

" #1 X1 2

 

 

wk2

ð10:10:1-4Þ

fA ¼

 

 

k¼Kþ1

 

Note that the Zernike representation of aberrations is valid when the exit pupil is circular. Otherwise, the Zernike polynomials are not orthogonal. In some cases, such as aberrations due to atmospheric phase disturbances, the Zernike polynomial representation does not easily give a satisfactory representation with a finite number of terms.

11

Optical Devices Based on Wave Modulation

11.1INTRODUCTION

Recording and generation of optical waves can be achieved by a number of technologies, using wave modulation algorithms. The oldest, most used technology is the photographic film. More recently, spatial light modulators have been developed in order to synthesize or control a wave front by optical or electrical control signals in real time.

Another approach is the use of solid state and similar technologies to fabricate diffractive optical elements, which control light through diffraction rather than refraction. An exciting development is the combination of refractive and diffractive optical elements in a single device to achieve a number of novel properties such as reduction of aberrations.

In previous chapters, analysis of optical systems was undertaken mostly in terms of linear system theory and Fourier transforms. The same knowledge base will be used in this chapter and succeeding chapters to synthesize optical elements for specific tasks.

This chapter consists of seven sections. Photographic films and plates are the most well-known devices for recording, and their properties especially for coherent recording are described in Sections 11.2 and 11.3. The physical mechanisms for the modulation transfer function of such media are discussed in Section 11.4. Bleaching is an important technique for phase modulation with photographic films and plates, and it is described in Section 11.5.

The implementation of diffractive optical devices discussed in detail in Chapters 15 and 16 is usually done with other technologies, especially the ones used in VLSI and integrated optics. Fundamentals of such devices are covered in Section 11.6. A particular implementation technology is e-beam lithography and reactive ion etching. It is described in Section 11.7.

11.2PHOTOGRAPHIC FILMS AND PLATES

Photographic film is a very low-cost optical device for detecting optical radiation, storing images, and spatially controlling light [Goodman]. It is made up of an emulsion containing light-sensitive silver halide (usually AgBr) particles. The

Diffraction, Fourier Optics and Imaging, by Okan K. Ersoy

Copyright # 2007 John Wiley & Sons, Inc.

177

Соседние файлы в предмете Оптика