Скачиваний:
24
Добавлен:
15.08.2013
Размер:
541.26 Кб
Скачать

22. Radical anions and cations derived from CDC, CDO or CDN groups 1291

In an extremely clever study, Tanner and collaborators have estimated rate constants for fragmentation of a series of ˛-haloacetophenones41. These rate constants were determined by the intramolecular competition outlined in Scheme 9. Radical ion 4 was generated by reaction with 1,3-dimethyl-2-phenylbenzimidazoline (DMBI). The rate constant ratio (k1/k2) was determined by the relative yields of the two products 5 and 6. With the assumption that the ˛-substituent does not affect the magnitude of k2, k2 was assumed to be equal to 3 ð 107 s 1 (which had been measured earlier by Wipf and Wightman for the dehalogenation of p-bromoacetophenone radical anion)42.

 

 

 

 

 

O

 

 

O

 

 

 

 

 

CH2

SH

S

CH3

 

 

 

 

 

 

 

+ X

 

 

Br

 

O

Br

 

 

(5)

 

 

 

 

 

 

 

k1

 

 

O

 

 

CH2 X

 

 

 

 

 

O

 

 

CH2 X

Br

 

k2

 

 

 

 

 

 

 

(4)

 

CH2 X

SH

S

 

 

 

(6)

 

 

 

 

 

 

+ Br

 

 

 

SCHEME 9

Some of the results of these experiments are summarized in Table 2. The results reveal that the rate increases as the basicity of X decreases. For X D Br or Cl, it is assumed that fragmentation occurs via dissociative electron transfer, i.e. fragmentation and electron transfer is concerted; the radical anion Ph(CDOž )CH2X has no significant lifetime.

Mathivanan, Johnston and Wayner examined the effect of substituents on the rates of cleavage of ˛-phenoxyacetophenone radical anions (equation 6)43. In this study, the radical anions were generated by trapping solvated electrons produced by laser-induced photoionization of 4,40 -dimethoxystilbene in CH3CN and DMF. Their results show that the fragmentation rate is enhanced when Y is electron withdrawing, but retarded when X is electron withdrawing.

 

 

 

O

 

 

O

 

O

 

O

 

 

CH2 +

 

 

 

X

Y

X

Y

(6)

 

 

 

Dehalogenation of ˛-substituted ketones and esters via radical anions has also been examined for its synthetic utility. As reported by Molander, Sml2 is an especially effective reagent for this transformation (equation 7)44. Yields are typically high (70 100%) for X D Cl, OAc, OSiMe3, OCOCH2Ph, OTs, etc.). A mechanism for the reduction of esters (Scheme 10) has been suggested.

1292

Daniel J. Berger and James M. Tanko

 

TABLE 2.

Rate constants for ˇ-cleavage

 

of several ˛-substituted acetophenone radical

 

anionsa

 

 

 

 

 

 

 

 

 

O

 

k

 

 

O

 

 

 

 

+ X

 

PhCCH2 X

 

 

 

 

 

 

 

 

PhCCH2

 

 

X

 

 

k s 1

 

Br, Cl

>109

 

 

F

5 ð 1099

 

 

PhCO2

6.3 ð 108

 

 

CH3CO2

9.6

ð 106

 

 

PhO

9.5

ð 106

 

 

PhS

9.3

ð 10

 

a Reference 41.

 

 

O

 

 

 

 

 

 

 

 

Sml2

 

 

 

 

 

 

O

 

 

 

 

 

 

(7)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

C

 

 

C

X

 

 

 

R

 

C

 

 

 

C

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THF (MeOH)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

 

 

 

 

 

 

 

Br

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(H3 C)2 CCO2 Et

 

 

 

 

 

 

 

(H3 C)2

 

CCO2 Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sm+2 Sm+3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Br

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sm+3

Sm+2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(H3 C)2 CCO2 Et

 

 

 

 

 

 

 

(H3 C)2 CCO2 Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

+

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(H3 C)2 CCO2 Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCHEME 10

 

 

 

 

 

Reductions of ˛-bromo ketones and esters can also be accomplished in a free radical chain process (Scheme 11) using 2-propanol or 2-methyldioxolane45. The 2- hydroxypropyl radical is an effective reducing agent with E° D 1.11 V vs Ag/AgCl. An application of this chemistry to yield spiro- -lactones has been reported (Scheme 12)46.

(ii) Long-range cleavage involving >CDOž . The presence of the >CDOž functionality may induce cleavage of distant C X bonds, presumably via intramolecular electron transfer. Examples include dehalogenations of ring-substituted benzophenone and acetophenone radical anions which yield aryl radicals. Results from a recent study from the Tanner group are summarized in Table 341. General trends emerge from these results such as leaving group abilities (l > Br > Cl ; p-X > m-X). Because of extended conjugation in ArCOPhž , these radical anions fragment at a rate one to two orders of magnitude slower than ArCOCH3ž .

22. Radical anions and cations derived from CDC, CDO or CDN groups 1293

O

 

O

 

 

 

initiator

 

 

 

RCCH2 Br

RCCH3

(CH3 )2 CHOH

 

 

 

 

 

 

 

 

 

via

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CH3 )2 COH

+ RCCH2 Br

 

 

 

(CH3 )2 C

 

OH

+ RCCH2 Br

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

Br

 

 

 

 

RCCH2 Br

 

 

 

 

 

 

RCCH2

 

O

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RCCH2 +

(CH3 )2 CHOH

 

 

 

RCCH3 +

(CH3 )2 COH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCHEME 11

 

 

 

 

 

 

 

 

 

 

 

 

 

hν

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H3 C

 

 

 

 

H C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

CH2 Br

 

 

MeOH / i-PrOH

 

 

 

 

H3 C

 

 

 

 

 

 

 

 

O

 

 

 

 

Ph2 C

 

 

O

 

 

H3 C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

via

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H3 C

 

 

CH2 Br

 

 

 

 

 

 

 

 

 

 

H3 C

 

 

 

 

H3 C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H3 C

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

O

 

H3 C

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

H3 C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

CH2

 

 

 

 

H3 C

 

 

 

 

 

 

 

 

 

 

 

 

 

H3 C

 

 

 

 

H3 C

O

 

 

 

 

 

 

 

 

 

 

H3 C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

SCHEME 12

CH

O

O

In a recent study, Saveant´ has found that the rates of dehalogenation are affected by solvent and ion-pairing effects47. For example, the dehalogenation of p-chlorobenzophenone radical anion can be circumvented when the counterion is LiC or MgC2. Saveant´ has suggested that ionpairing stabilizes the radical anion, thereby retarding the rate of chloride loss. Indeed, the major product when these counterions are present is the corresponding pinacol (Scheme 13).

(iii) Ring-opening reactions involving >CDOž . (a) Cyclopropane ring openings. Dissolving metal reductions of aliphatic cyclopropyl ketones usually leads to ring opening, and is a classic procedure for introducing angular methyl groups in steroid synthesis (equation 8)48. Ring opening is sensitive to stereoelectronic factors (i.e. the rupturing C C bond must properly overlap with the -system of CDO) and generally believed to

1294

 

 

 

 

Daniel J. Berger and James M. Tanko

 

TABLE 3. Rate constants for dehalogenation of ring-substituted ace-

 

tophenones and benzophenonesa

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

R

 

 

k

 

 

 

 

R + X

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k(s 1)

 

 

 

 

 

 

 

X

 

 

 

R D CH3

 

 

 

 

R D C6H5

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

p-I

3.5

ð 108

.

 

 

 

 

6

 

 

 

 

 

 

 

 

m-I

 

 

 

 

.

 

 

 

ð

10

 

 

p-Br

1 9 ð 107

2 5

4

 

 

 

 

 

 

.

10

 

6

ð

10

 

 

 

3 2

ð 3

 

 

 

 

 

 

 

2

 

 

m-Br

8 ð 103

 

7.9 ð 10

 

 

p-Cl

3 ð 10

 

 

 

 

 

 

 

29

 

 

 

m-Cl

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Data from Reference 41.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

fast

 

 

 

 

 

+ Cl

 

 

(free)

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M +n

 

+2

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(M

+n

= Mg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, Li )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

slow

 

 

 

 

 

 

 

 

 

OM+ n

 

 

 

 

 

 

 

 

 

 

 

 

DIMER2

(ion-pair) Cl

SCHEME 13

involve ketyl anion intermediates49.

Li

NH3

(8)

O O

There has been considerable interest in ring opening of cyclopropyl-containing ketyl anions from both a mechanistic and synthetic viewpoint. Cyclopropyl substituents are often

22. Radical anions and cations derived from CDC, CDO or CDN groups 1295

utilized to ‘probe’ for the occurrence of SET in a variety of transformations involving carbonyl groups such as nucleophilic additions. The general premise of this approach is illustrated in Scheme 14. If the nucleophile reacts with the carbonyl compound via SET, ketyl anion 7 is produced. Incorporation of a cyclopropyl group into the molecule diverts the radical anion (via a ˇ-cleavage reaction driven by relief of cyclopropane ring strain) to yield a ring-opened distonic radical anion 8. (This ring opening is in direct analogy to that of the cyclopropyl carbinyl neutral free radical which opens to the homoalllyl radical with a rate constant on the order of 108 s 1.)50 Thus, the detection of cyclopropane ring-opened products might imply that radical anions were involved along the reaction pathway. There are two important assumptions associated with this approach: (a) ring opening is fast and irreversible, and (b) ring opening can only occur via the SET pathway. In retrospect, it has been found that neither is necessarily valid.

In 1990, Tanko and Drumright51 presented evidence that the ring opening of the radical anion generated from phenyl cyclopropyl ketone (Scheme 15) is reversible, with an

O

Nu:

O

+

polar

 

 

R

 

R

 

 

Nu

SET

 

(unrearranged)

 

 

O

 

 

/ Nu

 

R

 

 

(7)

 

 

O

 

O

 

/ Nu

Nu

 

 

R

 

R

(8)

 

(rearranged)

 

 

 

 

SCHEME 14

O

 

O

 

 

k0

O

SCHEME 15

1296

TABLE 4. Effect of substituents on the rate of ring opening of cyclopropylcarbinyl radicals and related radical anions

 

 

 

 

 

 

 

Reaction

k1 (s 1)

k 1 (s 1)

H°

Reference

 

 

 

 

 

 

 

 

 

 

 

 

 

(kcal mol 1)

 

 

 

 

 

 

 

 

 

 

1.2 ð 108

5 ð 103

3.1

50

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

1 ð 106

1.2 ð 107

C3.3

53

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

Ph

3.6 ð 108

 

 

 

 

 

 

54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

O

2

8 ð 107

C11

 

 

 

 

 

 

 

 

 

 

51

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

1 ð 107

 

 

 

2

52

Ph

 

 

 

 

Ph

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

CH

CH2

 

 

5 ð 105

 

 

 

2

52

 

 

 

 

 

Ph

 

 

 

 

 

 

CH CH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22. Radical anions and cations derived from CDC, CDO or CDN groups 1297

equilbrium constant favoring the ring-closed form (Keq D 2 ð 10 8; k0 D 2 s 1)30. It was suggested that the relief of cyclopropane ring strain upon ring opening did not sufficiently compensate for the loss of resonance energy of the highly delocalized ketyl anion.

In a subsequent study, it was found that placement of radical stabilizing substituents on the cyclopropane ring partially compensates for the loss of resonance energy (by stabilizing the radical portion of the resulting distonic radical anions), but the rate constants for ring opening were still substantially slower than that of the analogous cyclopropyl carbinyl free radicals (Table 4)52.

Moreover, it appears that phenyl substitution on the cyclopropane ring does not solve the problem of reversibility. Tanner demonstrated that the radical anion derived from (C)-trans-1-benzoyl-2-phenylcyclopropane (9) isomerizes to (š)-trans and (š)-cis (presumably via ring-opened radical anion 10), providing definitive evidence that even for the substituted systems, ring opening is reversible. Rate constants for ring opening and closing were reported (Scheme 16).

O

 

9 x 105 s 1

O

 

23 s 1

 

O

 

Ph

 

 

 

 

 

Ph

 

Ph

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

Ph

 

4 x 10

2

s

 

5 x 106 s

1

Ph

 

 

 

Ph

 

(9)

 

 

 

 

 

(10)

 

 

 

(11)

 

 

 

 

 

 

SCHEME 16

 

 

 

 

A substrate which appears to solve many of these difficulties has recently been reported. The radical anion generated from spiro compound 12 undergoes ring opening to 3° distonic radical 14 with a rate constant >107 s 1 (equation 9)55. For this system, relief of cyclopropane ring strain and an increase in resonance energy provide the thermodynamic impetus for ring opening ( H° for ring opening of this radical anion is estimated to be20 kcal mol 1).

 

O

 

 

O

 

 

O

R

R

 

R

R

 

R

R

 

 

+ e

 

k0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

(9)

 

 

R = t-Bu

 

 

 

(12)

(13)

(14)

Cyclopropyl groups have been used to probe for ketyl anion intermediacy in reactions of Sml2 with ketones. In 1991, Molander reported that treatment of cyclopropyl ketone 15 with Sml2 yields ring-opened product 16 in 81% overall yield (equation 10)56 Timberlake and Chen reported that several cyclopropyl-ring-opened products result from treatment of 17 with Sml2 (Scheme 17)57.

1298

Daniel J. Berger and James M. Tanko

 

 

O

O

 

 

 

CH3 CH2

 

 

 

Sml2

 

 

 

 

Fe(DBM)3

(10)

 

 

THF (t-BuOH)

 

 

H

H

 

(15)

 

 

(16)

O

 

O

O

Sml2

(17)

O

OH

OH

O

+

SCHEME 17

A number of synthetically interesting transformations involving Sml2-induced ring opening of cyclopropyl ketones were reported by Batey and Motherwell, involving subsequent cyclization of the ring-opened radical ion onto a remote CDC or C C. One example from this study is illustrated in equation 1158a. Moreover, these authors also demonstrated that it was possible to alkylate the ring-opened enolate anion with electrophilic reagents (equation 12).

22. Radical anions and cations derived from CDC, CDO or CDN groups 1299

O

 

O

Sml2

 

(11)

THF (DMPU)

 

 

 

 

 

57%

O

 

O

Sml2

Br

(12)

THF (DMPU)

 

 

 

 

37%

Analogous ring opening of cyclopropyl esters with Sml2 were also reported in 1994 by Imamoto, Hatajima and Yoshizawa (equation 13).58b

 

CO2 Me

Sml2

 

 

 

THF

CH3 CHDCH2 CH(CO2 Me)2

(13)

 

 

CH3

CO2 Me

Fe +3 (cat.)

 

 

(CH3 )2 CHOD

92%

 

 

 

(b) Oxirane ring openings. Although analogous to cyclopropanes, ring opening of radical anions generated from ˛,ˇ-epoxyketones are more complicated mechanistically because (in principle) either C C or C O bond cleavage may result. In the case of neutral free radicals, this competition is highly substituent-dependent. For unsubstituted oxiranylmethyl radicals, C O bond cleavage is observed. Radical-stabilizing substituents (vinyl, phenyl) on the oxirane ring tend to favor C C bond cleavage59.

There have been very few studies involving ring opening of radical anions generated from ˛,ˇ-epoxyketones, and in all of these, only C O bond cleavage has been found. This method has been successfully applied to the synthesis of ˇ-hydroxyketones or esters. These C O cleavages are thought to produce an enoyl radical and alkoxide anion (path d, Figure 3), although it is not clear that the available experimental evidence rules out path c. (Presumably C C bond cleavage would proceed according to path a on the basis of thermodynamic considerations.) The influence of substituents, counterion and solvent on the relative importance of these (potentially competitive) pathways, or whether any of these ring openings are reversible, is currently unknown.

In 1992, Hasegawa’s group60 found that irradiation of ˛,ˇ-epoxyketone 18 in the presence of triethylamine led to ring-opened products, the nature of which varied as a function of solvent and counter-ion (Table 5).

The proposed mechanism for this reaction is summarized in Scheme 18. Irradiation of 18 in the presence of Et3N yields SSRIP (21). Oxirane ring opening is suggested to yield 22, which, via CRIP (23), abstracts a proton from Et3NžC to yield 25. Diketone 19 is suggested to arise from a 1,2-hydrogen shift (22 ! 24), followed by back electron transfer. (Note: Since 1,2-hydrogen shifts are virtually unknown in free radical chemistry, it might be more reasonable to formulate this sequence according to equation 14). The effect of LiC on the product distribution is attributed to the fact that LiC favors SSRIP

1300

 

 

Daniel J. Berger and James M. Tanko

 

 

 

 

 

O

 

 

 

 

 

 

 

O

 

 

 

 

R

O

 

 

 

 

 

 

 

R

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)

 

 

c)

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

O

 

 

 

 

 

 

 

 

 

 

O

 

b)

 

 

d)

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

O

 

 

R

 

 

 

 

 

 

 

R

 

 

 

CCbond cleavage

 

 

 

 

 

 

 

CO bond cleavage

 

 

(not yet observed)

 

 

 

 

 

 

 

(observed)

 

FIGURE 3. Possible ring-opening pathways for ˛,ˇ-epoxyketone radical anions

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

// Et3 N+

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(21)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

H

 

 

 

 

O

 

H

 

 

 

 

 

 

 

 

O

// Et3 N+

 

 

 

 

 

O

Et3 N+

 

 

 

 

 

 

 

 

 

 

Ph

 

 

Ph

 

 

Ph

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SSRIP (22)

 

 

 

 

 

 

 

CRIP (23)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

O

 

 

 

 

 

 

 

 

O

 

 

 

 

H

OH

 

 

 

 

 

 

 

+

 

 

 

Et2 NCHCH

 

 

C

 

 

 

 

 

 

 

 

 

 

 

// Et3 N

 

 

 

 

 

 

 

 

Ph

 

 

Ph

 

 

 

 

Ph

 

 

Ph

 

 

 

 

 

 

(24)

 

 

 

 

 

 

 

(25)

 

 

 

 

BET

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

SCHEME 18

 

 

 

 

 

 

 

 

formation8, thereby preventing deprotonation of Et3NžC at the CRIP stage.

 

O

 

H

O

 

 

O

O

 

 

+

 

 

 

 

 

 

 

// Et3 N+

 

 

 

 

 

 

 

 

20 + Et

N

 

 

 

 

 

 

 

 

// Et3 NH

 

 

 

 

 

 

 

 

 

 

 

3

 

Ph

 

 

Ph

 

 

Ph

 

Ph

 

 

(14)

 

 

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в папке Patai S., Rappoport Z. 1997 The chemistry of functional groups. The chemistry of double-bonded functional groups