Скачиваний:
32
Добавлен:
15.08.2013
Размер:
116.67 Кб
Скачать

17. Radiation chemistry of amines, nitro and nitroso compounds

833

substituent attached to the aromatic ring. For example, a study has examined temperature effects on the loss of halide from the radical anions of the benzyl derivatives (49)65. X-radiation has also been used to induce transformations in aryl nitro derivatives isolated in argon matrices. Ionization under these conditions leads to radical cations that undergo intramolecular hydrogen transfer. The neutral products detected as a result of this are o-nitrosobenzoic acid and the isoxazolone (50). Both of these are produced by reaction of the ketene (51) initially formed by the hydrogen transfer66. Other studies have examined the -radiolysis of nitrobenzene/carbon tetrachloride/water systems. The volatile products formed in these are dependent upon the composition of the reaction mixture. In the presence of high concentrations of carbon tetrachloride chlorobenzene is formed67.

 

 

R1

R2

R3

X

 

 

 

 

 

 

 

 

H

H

H

Cl

 

 

H

Me

H

Cl

R3

R1

H

Et

H

Cl

 

C X

Me

But

H

Cl

 

R2

Me

H

H

Br

O2 N

 

But

H

H

Br

(49)

 

Me

H

Me

Br

 

 

 

 

But

H

Me

Br

 

 

 

 

 

 

Considerable interest has been reported in the radiolytic reactions of radiosensitizing nitroimidazoles such as Metronidazole, 2-methyl-5-nitro-1H-imidazole-1-ethanol (52). Again loss of the nitro function as nitrite appears to be one of the principal events. The formation of nitrite from -irradiation of the Ni(II) complex of the imidazole 52 arises by hydroxy radical attack to form the radical anion. This either eliminates nitrite or undergoes a four-electron reduction to a hydroxylamino derivative68,69.

O

O

 

N

 

 

 

C

 

 

O

OO2 N

N

Me

 

N +

 

N

 

OH

OH

OH

 

 

 

(50)

(51)

(52)

 

Several studies have reported the influence of nitroimidazole derivatives on biological systems. Thus the influence of Misonidazole, 1-(2-nitro-1-imidazoyl)-3-methoxy-propan- 2-ol, on strand breaking in calf thymus DNA under ionizing radiation conditions has been assessed70. Pulse-radiolysis studies of nitroheterocyclic compounds have examined

834

William M. Horspool

the interaction of the nitro radical with various cellular extracts and purified enzymes71 and copper oxidases72. The imidazole derivatives (53) have also been tested as radiation sensitizers of hypoxic carcinoma cells73.

NO2

R1

 

 

N

 

 

 

 

SO2

 

 

R3

 

N

 

 

 

 

Me

R2

 

 

 

 

R1

R2

R3

 

 

 

 

 

 

 

Me

Me

OCH2 CO2 H

(53)

 

Cl

Me

H

 

 

Cl

Cl

H

 

 

Cl

CO2 H

Cl

 

 

 

 

 

C. Nitroso Compounds

Radiation-induced electron transfer to nitroso compounds has also been studied. This technique, using electron expulsion from trichlorofluoromethane, provided data that the radical cation 54 is formed from nitrosobenzene at 77 K. Analysis of the EPR spectrum indicates that the singly occupied MO lies in the plane of the benzene ring and has high 2s character74. Irradiation of the dimer 55 under the same conditions shows that a trace of the monomeric radical cation 56 is produced74.

N O+

(Me3 CNO)2

Me3 CNO +

(54)

(55)

(56)

O

 

O

 

 

C

 

 

 

 

O

N

 

N

OH

 

H

(57)

(58)

 

X-radiation of o-nitrosobenzaldehyde also brings about intramolecular hydrogen transfer to yield the ketene 57. Cyclization within this affords 5866.

17. Radiation chemistry of amines, nitro and nitroso compounds

835

V.REFERENCES

1.C. L. Greenstock, ‘Radiation chemistry of amines, nitro and nitroso compounds’ in Supplement F: The Chemistry of Amino, Nitroso and Nitro Compounds and their Derivatives, Part 1 (Ed. S. Patai), Wiley, Chichester, 1982, p. 291.

2.V. N. Belevsky, O. In Quan, S. I. Belopushkin and V. I. Feldman, Dokl. Akad. SSSR, 281, 869 (1985).

3.V. N. Belevsky, S. I. Belopushkin and V. I. Feldman, J. Radioanal. Nucl. Chem. Lett., 107, 67 (1986).

4.M. Kumar and P. Neta, J. Phys. Chem., 96, 3350 (1992).

5.G. W. Eastland, D. N. R. Rao and M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2, 1551 (1984).

6.S. Das, M. N. Schuchmann, H. -P. Schuchmann and C. von Sonntag, Chem. Ber., 120, 319 (1987).

7.S. Das and C. von Sonntag, Z. Naturforsch. B., Org. Chem., 41B, 505 (1986).

8.C. von Sonntag and H. -P. Schuchmann Angew. Chem., Int. Ed. Engl., 30, 1229 (1991).

9.R. E. Huie, L. C. T. Shoute and P. Neta, Int. J. Chem. Kinet., 23, 541 (1991).

10.S. M. Lefkowitz and A. D. Trifunac, J. Phys. Chem., 88, 77 (1984).

11.S. Matsuoka, T. Kohzuki, C. Pac, A. Ishida, S. Takamuku and M. Kusaba, J. Phys. Chem., 96, 4443 37 (1992).

12.S. Matsuoka, H. Fujii, T. Yamada, C. Pac, A. Ishida, S. Takamuku, M. Kusaba, N. Nakashima, S. Yanagida, K. Hashimoto and T. Sakata, J. Phys. Chem., 95, 5802 (1991).

13.J. Piekarskagolebiowska, C. Z. Stradowski and M. Szadkowskanicze, J. Photochem. Photobiol. A, Chem., 49, 325 (1989).

14.J. Piekarskagolebiowska and J. Kroh, Bull. Pol. Acad. Sci., Chem., 39, 369 (1991).

15.J. Kroh, Isotopenpraxis, 26, 461 (1990).

16.C. J. Rhodes, J. Chem. Soc., Perkin Trans. 2, 235 (1992).

17.D. K. Maity, H. Mohan and J. P. Mittal, J. Chem. Soc., Perkin Trans. 2, 919 (1994).

18.X. -Z. Qin and F. Williams, J. Phys. Chem., 90, 2292 (1986).

19.C. Crouzet and J. Marchal, Radiat. Phys. Chem., 40, 359 (1992).

20.C. Crouzet and J. Marchal, Radiat. Phys. Chem., 40, 233 (1992).

21.C. Crouzet and J. Marchal, Radiat. Phys. Chem., 41, 851 (1993).

22.C. Crouzet, Radiat. Phys. Chem., 40, 233 (1992).

23.P. P. Klemchuk, Radiat. Phys. Chem., 41, 165 (1993).

24.S. Falicki, D. J. Carlsson, J. M. Cooke and D. J. Gosciniak, Polym. Degrad. Stab., 38, 265 (1992).

25.D. W. Werst and A. D. Trifunac, J. Phys. Chem., 95, 1268 (1991).

26.Z. B. Alfassi, S. Mosseri and P. Neta, J. Phys. Chem., 93, 1380 (1989).

27.P. Neta, R. E. Huie, S. Mosseri, L. V. Shastri, J. P. Mittal, P. Maruthamuthu and S. Steenken, J. Phys. Chem., 93, 4099 (1989).

28.P. Neta, R. E. Huie, P. Maruthamuthu and S. Steenken, J. Phys. Chem., 93, 7654 (1989).

29.S. Padmaja, Z. B. Alfassi, P. Neta and R. E. Huie, Int. J. Chem. Kinet., 25, 193 (1993).

30.P. Neta, R. E. Huie and A. B. Ross, J. Phys. Chem., Ref. Data, 19, 413 (1990).

31.L. C. T. Shoute and P. Neta, J. Phys. Chem., 94, 2447 (1990).

32.P. Neta and R. E. Huie, J. Phys. Chem., 89, 1783 (1985).

33.S. Padmaja, Z. B. Alfassi, P. Neta and R. E. Huie, Int. J. Chem. Kinet., 25, 193 (1993).

34.G. Merenyi,´ J. Lind and X. Shen, J. Phys. Chem., 92, 134 (1988).

35.J. Butler, E. J. Land, W. A. Prutz and A. J. Swallow, J. Chem. Soc., Chem. Commun., 348 (1986).

36.S. V. Jovanovic, A. Harriman and M. G. Simic, J. Chem. Phys., 90, 1935 (1986).

37.M. Faraggi, M. R. DeFelippis and M. H. Klapper, J. Am. Chem. Soc., 111, 5141 (1989).

38.M. R. DeFelippis, M. Faraggi and M. H. Klapper, J. Am. Chem. Soc., 112, 5640 (1990).

39.M. DeFelippis, C. P. Murthy, M. Faraggi and M. H. Klapper, Biochemistry, 28, 4847 (1989).

40.M. R. DeFelippis, C. P. Murthy, F. Broitman, D. Weinraub, M. Farragi and M. H. Klapper, J. Phys. Chem., 95, 3416 (1991).

41.M. Faraggi and M. H. Klapper, J. Chim. Phys.-Phys.-Chim. Biol., 90, 711 (1993).

42.Z. B. Alfassi, R. E. Huie, M. Kumar and P. Neta, J. Phys. Chem., 96, 767 (1992).

43.C. von Sonntag, The Chemical Basis of Radiation Biology, Taylor and Francis, London, New York and Philadelphia, 1987, pp. 393 428.

44.J. Monig,¨ R. Chapman and K. -D. Asmus, J. Phys. Chem., 89, 3139 (1985).

836

William M. Horspool

45.C. Wiezorek, Radiat. Res., 100, 235 (1984).

46.D. G. Wang, H. -P. Schuchmann and C. von Sonntag, Z. Naturforsch. B, Org. Chem., 48, 761 (1993).

47.V. K. Sharma and B. H. J. Bielski, Inorg. Chem., 30, 4306 (1991).

48.S. Goldstein, G. Czapski, H. Cohen and D. Meyerstein, Inorg. Chem., 31, 2439 (1992).

49.C. Wiezorek, Int. J. Radiat. Biol., 45, 93 (1984).

50.K. -O. Hiller and K. -D. Asmus, J. Phys. Chem., 87, 3682 (1983).

51.M. H. Champagne, M. W. Mullins, A. O. Colson and M. D. Sevilla, J. Phys. Chem., 95, 6487 (1991).

52.K. -D. Asmus, M. Gobl,¨ K. -O. Hiller, S. Mahling and J. Monig,¨ J. Chem. Soc., Perkin Trans. 2, 641 (1985).

53.L. K. Steffen, J. Am. Chem. Soc., 113, 2141 (1991).

54.K. Bobrowski and J. Holcman, J. Phys. Chem., 93, 6381 (1989).

55.K. Bobrowski, C. Schoneich,¨ J. Holcman and K. -D. Asmus, J. Chem. Soc., Perkin Trans. 2, 975 (1991).

56.K. Bobrowski, C. Schoneich,¨ J. Holcman and K. -D. Asmus, J. Chem. Soc., Perkin Trans. 2, 353 (1991).

57.S. Gebicki and J. M. Gebicki, Biochem. J., 289, 743 (1993).

58.S. K. Kapoor and C. Gopinathan, J. Radioanal. Nucl. Chem., 171, 443 (1993).

59.K. J. A. Davies, M. E. Delsignoret and S. W. Lin, J. Biol. Chem., 262, 9902 (1987).

60.K. J. A. Davies, S. W. Lin and R. E. Pacifici, J. Biol. Chem., 262, 9914 (1987).

61.K. J. A. Davies and M. E. Delsignoret, J. Biol. Chem., 262, 9908 (1987).

62.K. J. A. Davies, J. Biol. Chem., 262, 9895 (1987).

63.J. C. Ruhl, D. H. Evans, P. Hapiot and P. Neta, J. Am. Chem. Soc., 113, 5188 (1991).

64.J. C. Ruhl, D. H. Evans and P. Neta, J. Electroanal. Chem., 340, 257 (1992).

65.M. Meot-ner, P. Neta, R. K. Norris, and K. Wilson, J. Phys. Chem., 90, 168 (1986).

66.J. Michalak, J. Gebicki and T. Bally, J. Chem. Soc., Perkin Trans. 2, 1321 (1993).

67.J. Kuruc and M. K. Sahoo, J. Radioanal. Nucl. Chem., 173, 395 (1993).

68.M. B. Roy, P. C. Mandal and S. N. Bhattacharyya, J. Chem. Soc., Dalton Trans., 2485 (1993).

69.T. Kagiya, H. Ide, S. Nishimoto and T. Wada, Int. J. Radiat. Biol., 44, 505 (1983).

70.G. W. Buchko and M. Weinfeld, Biochemistry, 32, 2186 (1993).

71.N. Lougmani, A. Guissani, Y. Henry and B. Hickel, J. Chim. Phys. Phys.-Chim. Biol., 90, 931 (1993).

72.N. Lougmani, A. Guissani, Y. Henry and B. Hickel, J. Chim. Phys.-Phys.-Chim. Biol., 90, 943 (1993).

73.R. A. Egolf and N. D. Heindel, J. Heterocycl. Chem., 28, 577 (1991).

74.H. Chandra, D. J. Keeble and M. C. R. Symons, J. Chem. Soc., Faraday Trans. 1, 84, 609 (1988).

Соседние файлы в папке Patai S., Rappoport Z. 1996 The chemistry of functional groups. The chemistry of amino, nitroso, nitro and related groups. Part 2