Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Garrett R.H., Grisham C.M. - Biochemistry (1999)(2nd ed.)(en)

.pdf
Скачиваний:
182
Добавлен:
15.08.2013
Размер:
24.81 Mб
Скачать

24.3 -Oxidation of Odd-Carbon Fatty Acids

791

24.3 -Oxidation of Odd-Carbon Fatty Acids

 

O

 

 

 

 

 

 

SCoA + ATP + CO2 + H2O

 

 

CH3

CH2C

 

 

 

 

-Oxidation of Odd-Carbon Fatty Acids Yields Propionyl-CoA

Propionyl-CoA

Fatty acids with odd numbers of carbon atoms are rare in mammals, but fairly common in plants and marine organisms. Humans and animals whose diets include these food sources metabolize odd-carbon fatty acids via the -oxida- tion pathway. The final product of -oxidation in this case is the 3-carbon pro- pionyl-CoA instead of acetyl-CoA. Three specialized enzymes then carry out the reactions that convert propionyl-CoA to succinyl-CoA, a TCA cycle intermediate. (Because propionyl-CoA is a degradation product of methionine, valine, and isoleucine, this sequence of reactions is also important in amino acid catabolism, as we shall see in Chapter 26.) The pathway involves an initial carboxylation at the -carbon of propionyl-CoA to produce D-methylmalonyl- CoA (Figure 24.19). The reaction is catalyzed by a biotin-dependent enzyme, propionyl-CoA carboxylase. The mechanism involves ATP-driven carboxylation of biotin at N1, followed by nucleophilic attack by the -carbanion of propi- onyl-CoA in a stereo-specific manner.

D-Methylmalonyl-CoA, the product of this reaction, is converted to the L-isomer by methylmalonyl-CoA epimerase (Figure 24.19). (This enzyme has often and incorrectly been called “methylmalonyl-CoA racemase.” It is not a racemase because the CoA moiety contains five other asymmetric centers.) The epimerase reaction also appears to involve a carbanion at the -position (Figure 24.20). The reaction is readily reversible and involves a reversible dissociation of the acidic -proton. The L-isomer is the substrate for methylmalonyl-CoA mutase. Methylmalonyl-CoA epimerase is an impressive catalyst. The pKa for the proton that must dissociate to initiate this reaction is approximately 21! If binding of a proton to the -anion is diffusion-limited, with kon 109 M 1 sec 1, then the initial proton dissociation must be rate-limiting, and the rate constant must be

koff Ka kon (10 21 M) (109 M 1 sec 1) 10 12 sec 1

The turnover number of methylmalonyl-CoA epimerase is 100 sec 1, and thus the enzyme enhances the reaction rate by a factor of 1014.

E

 

B

 

 

 

E

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

O

 

H3C

 

O

O2C

 

 

 

 

 

 

 

 

SCoA

O2C

 

 

 

 

 

 

 

 

SCoA

 

 

C

 

 

C

 

 

C

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

H

 

 

 

 

 

(S)-Methylmalonyl-CoA (R)-Methylmalonyl-CoA

 

E

 

B

O

 

E

 

B

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

H

 

O2C

 

 

 

 

 

 

SCoA

 

O2C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

C

 

 

 

 

C

 

C

 

SCoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resonance-stabilized carbanion intermediate

Propionyl-CoA carboxylase

_

OOC O

H3C C C SCoA

H

D-Methylmalonyl-CoA

Methylmalonyl-CoA epimerase

 

H3C

O

 

_

C

C

SCoA

OOC

H

L-Methylmalonyl-CoA

Methylmalonyl-CoA mutase

 

O

 

CH2

C

SCoA

_

OOC CH2

Succinyl-CoA

FIGURE 24.19 The conversion of propi- onyl-CoA (formed from -oxidation of oddcarbon fatty acids) to succinyl-CoA is carried out by a trio of enzymes as shown. SuccinylCoA can enter the TCA cycle or be converted to acetyl-CoA.

FIGURE 24.20 The methylmalonyl-CoA epimerase mechanism involves a resonancestabilized carbanion at the -position.

FIGURE 24.21
C O
SCoA

792 Chapter 24 Fatty Acid Catabolism

CH2

O

A

 

OH

OH

 

N

N

Co3+ N

N

 

CH2 O A

OH OH

 

N

N

Co3+ N

N

 

A B12-Catalyzed Rearrangement Yields Succinyl-CoA from L-Methylmalonyl-CoA

The third reaction, catalyzed by methylmalonyl-CoA mutase, is quite unusual because it involves a migration of the carbonyl-CoA group from one carbon to its neighbor (Figure 24.21). The mutase reaction is vitamin B12–dependent and begins with homolytic cleavage of the Co3 OC bond in cobalamin, reducing the cobalt to Co2 . Transfer of a hydrogen atom from the substrate to the deoxyadenosyl group produces a methylmalonyl-CoA radical, which then can undergo a classic B12-catalyzed rearrangement to yield a succinyl-CoA radical. Hydrogen transfer from the deoxyadenosyl group yields succinyl-CoA and regenerates the B12 coenzyme.

 

 

H

 

 

 

_

 

 

 

 

 

COO

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

C

 

C

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

H

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCoA

 

 

 

 

 

CH2

 

 

 

 

 

 

 

 

 

 

O

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

OH

 

N

N

Co2+ N

N

 

_

COO

H2C CH2

CH2 O A

OH OH

 

N

N

Co2+ N

N

 

_

H COO

H C C H

C O

SCoA

CH3

O

A

 

OH

OH

 

N

N

Co2+ N

N

 

 

 

 

H

_

 

 

 

 

 

 

 

 

 

 

 

COO

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

C

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCoA

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

CH2

O

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

N

Co2+ N

N

 

A mechanism for the methylmalonyl-CoA mutase reaction. In the first step, Co3 is reduced to Co2 due to homolytic cleavage of the Co3 OC bond in cobalamin. Hydrogen atom transfer from methylmalonyl-CoA yields a methylmalonyl-CoA radical that can undergo rearrangement to form a succinyl-CoA radical. Transfer of an H atom regenerates the coenzyme and yields succinyl-CoA.

24.3 -Oxidation of Odd-Carbon Fatty Acids

793

A D E E P E R L O O K

The Activation of Vitamin B12

Conversion of inactive vitamin B12 to active 5 -deoxyadenosylcobal- amin is thought to involve three steps (see figure). Two flavoprotein reductases sequentially convert Co3 in cyanocobalamin to the Co2 state and then to the Co state. Co is an extremely powerful nucleophile. It attacks the C-5 carbon of ATP as shown, expelling the triphosphate anion to form 5 -deoxyadenosyl-

cobalamin. Because two electrons from Co are donated to the CoOcarbon bond, the oxidation state of cobalt reverts to Co3 in the active coenzyme. This is one of only two known adenosyl transfers (that is, nucleophilic attack on the ribose 5 -carbon of ATP) in biological systems. (The other is the formation of S-adenosylmethionine—see Chapter 26.)

 

 

 

 

NH2

 

 

O

O

O

N

N

 

NH2

 

 

O P O P O P O CH2 O

N

N

N

N

O

O

O

 

O

N

N

 

 

 

 

 

 

OH

OH

CH2

 

 

 

 

 

 

 

OH OH

CN

Flavoprotein

 

 

 

 

 

 

 

N

reductases

N

 

N

 

 

 

N Co3+ N

1

2

N Co+ N

3

N Co3+ N

N

N

N

 

 

 

N

CH3

N

CH3

N

CH3

 

 

DMBz

 

 

 

N

CH3

N

CH3

N

CH3

 

 

 

Inactive Vitamin B12 (Co3+)

Supernucleophile (Co+)

Active Coenzyme (Co3+)

Formation of the active coenzyme 5 -deoxyadenosylcobalamin from inactive vitamin B12 is initiated by the action of flavoprotein reductases. The resulting Co species, dubbed a supernucleophile, attacks the 5 -carbon of ATP in an unusual adenosyl transfer.

Net Oxidation of Succinyl-CoA Requires Conversion to Acetyl-CoA

Succinyl-CoA derived from propionyl-CoA can enter the TCA cycle. Oxidation of succinate to oxaloacetate provides a substrate for glucose synthesis. Thus, although the acetate units produced in -oxidation cannot be utilized in gluconeogenesis by animals, the occasional propionate produced from oxidation of odd-carbon fatty acids can be used for sugar synthesis. Alternatively, succinate introduced to the TCA cycle from odd-carbon fatty acid oxidation may be oxidized to CO2. However, all of the 4-carbon intermediates in the TCA cycle are regenerated in the cycle and thus should be viewed as catalytic species. Net consumption of succinyl-CoA thus does not occur directly in the TCA cycle. Rather, the succinyl-CoA generated from -oxidation of odd-carbon fatty acids must be converted to pyruvate and then to acetyl-CoA (which is completely oxidized in the TCA cycle). To follow this latter route, succinyl-CoA entering the TCA cycle must be first converted to malate in the usual way, and then transported from the mitochondrial matrix to the cytosol, where it is oxida-

FIGURE 24.23
FIGURE 24.22

794 Chapter 24 Fatty Acid Catabolism

The malic enzyme reaction proceeds by oxidation of malate to oxaloacetate, followed by decarboxylation to yield pyruvate.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

H

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3(CH2)7

C

 

 

 

C

 

 

CH2(CH2)6C

 

SCoA

 

 

 

 

 

 

 

 

 

 

 

 

 

Oleoyl-CoA

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β -oxidation

3 CH3

 

C

 

SCoA

 

 

 

(three cycles)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

H

 

 

 

 

 

 

 

 

 

 

 

 

SCoA

 

CH3(CH2)7

C

 

C

 

 

 

CH2

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cis- 3-Dodecenoyl-CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enoyl-CoA isomerase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

SCoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3(CH2)7CH2

 

 

C

 

C

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

trans- 2-Dodecenoyl-CoA

 

 

 

 

 

 

 

 

 

H2O

 

 

 

Enoyl-CoA hydratase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3(CH2)7CH2 C CH2 C SCoA

OH

Continuation of β -oxidation

O

6 CH3C SCoA

-Oxidation of unsaturated fatty acids. In the case of oleoyl-CoA, three

-oxidation cycles produce three molecules of acetyl-CoA and leave cis- 3-dodecenoyl-CoA. Rearrangement of enoyl-CoA isomerase gives the trans- 2 species, which then proceeds normally through the -oxidation pathway.

 

 

 

 

COO

H+

 

 

 

COO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2

 

 

 

COO

 

 

 

 

 

 

H NADP+ NADPH

 

 

 

 

 

 

 

 

 

 

HO

 

 

C

 

 

 

O

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

C

 

 

 

 

 

CH2

 

 

 

 

CH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H+

 

CH3

 

 

 

 

C

 

 

 

 

C

 

 

 

O

 

 

 

O

 

 

 

O

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Malate

 

 

 

 

 

 

 

 

 

 

Pyruvate

 

 

 

 

 

 

 

 

 

 

 

Oxaloacetate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(enzyme-bound)

 

 

 

 

 

 

 

 

 

 

tively decarboxylated to pyruvate and CO2 by malic enzyme, as shown in Figure 24.22. Pyruvate can then be transported back to the mitochondrial matrix, where it enters the TCA cycle via pyruvate dehydrogenase. Note that malic enzyme plays an important role in fatty acid synthesis (see Figure 25.1).

24.4 -Oxidation of Unsaturated Fatty Acids

An Isomerase and a Reductase Facilitate the

-Oxidation of Unsaturated Fatty Acids

Unsaturated fatty acids are also catabolized by -oxidation, but two additional mitochondrial enzymes—an isomerase and a novel reductase—are required to handle the cis-double bonds of naturally occurring fatty acids. As an example, consider the breakdown of oleic acid, an 18-carbon chain with a double bond at the 9,10-position. The reactions of -oxidation proceed normally through three cycles, producing three molecules of acetyl-CoA and leaving the degradation product cis- 3-dodecenoyl-CoA, shown in Figure 24.23. This intermediate is not a substrate for acyl-CoA dehydrogenase. With a double bond at the 3,4-position, it is not possible to form another double bond at the 2,3- (or ) position. As shown in Figure 24.23, this problem is solved by enoyl-CoA isomerase, an enzyme that rearranges this cis- 3 double bond to a trans- 2 double bond. This latter species can proceed through the normal route of-oxidation.

Degradation of Polyunsaturated Fatty Acids

Requires 2,4-Dienoyl-CoA Reductase

Polyunsaturated fatty acids pose a slightly more complicated situation for the cell. Consider, for example, the case of linoleic acid shown in Figure 24.24. As with oleic acid, -oxidation proceeds through three cycles, and enoyl-CoA isomerase converts the cis- 3 double bond to a trans- 2 double bond to permit one more round of -oxidation. What results this time, however, is a cis- 4 enoyl-CoA, which is converted normally by acyl-CoA dehydrogenase to a trans- 2, cis- 4 species. This, however, is a poor substrate for the enoyl-CoA hydratase. This problem is solved by 2,4-dienoyl-CoA reductase, the product of which depends on the organism. The mammalian form of this enzyme produces a trans- 3 enoyl product, as shown in Figure 24.24, which can be converted by an enoyl-CoA isomerase to the trans- 2 enoyl-CoA, which can then proceed normally through the -oxidation pathway. Escherichia coli possesses a 2,4-dienoyl-CoA reductase that reduces the double bond at the 4,5-position to yield the trans- 2 enoyl-CoA product in a single step.

FIGURE 24.24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3(CH2)4 C

 

 

 

C

 

 

 

 

CH2

 

 

 

 

 

C

 

 

 

 

C

 

 

 

CH2(CH2)6C

 

 

CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cis-

9,

 

cis-

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β -oxidation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(three cycles)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

H

 

 

 

 

 

 

 

 

 

H

H

 

 

 

 

 

 

 

 

 

 

 

O

 

 

CoA + 3 CH3

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3(CH2)4 C

 

C

 

 

 

CH2

 

 

 

 

C

 

 

 

 

C

 

 

 

 

CH2

 

 

 

C

 

 

 

 

 

 

 

C

 

CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cis-

3,

 

cis-

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enoyl-CoA isomerase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3(CH2)4 C

 

 

 

C

 

 

 

 

CH2

 

 

 

 

CH2

 

 

 

 

 

C

 

 

C

 

 

 

 

C

 

 

 

 

 

CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trans-

2,

 

cis-

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One cycle of β -oxidation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CoA + CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3(CH2)4 C

 

 

 

C

 

 

 

CH2

 

CH2

 

 

 

 

C

 

 

 

 

 

 

C

 

 

CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cis-

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acyl-CoA dehydrogenase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

H

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3(CH2)4 C

 

 

 

C

 

 

C

 

 

 

C

 

 

C

 

 

 

CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trans- 2,

 

cis-

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NADPH + H+

 

 

 

 

2,4-Dienoyl-CoA reductase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NADP+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3(CH2)4CH2

 

 

C

 

C

 

 

 

CH2

 

 

 

 

 

 

 

C

 

 

 

 

 

CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trans-

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enoyl-CoA isomerase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3(CH2)4CH2

 

 

 

CH2

 

 

 

 

C

 

 

 

C

 

 

 

 

 

 

 

C

 

 

 

 

 

 

CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trans-

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β

-oxidation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(four cycles)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 CH3

 

C

 

 

 

 

CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acetyl-CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The oxidation pathway for polyunsaturated fatty acids, illustrated for linoleic acid. Three cycles of -oxidation on linoleoyl-CoA yield the cis- 3, cis- 6 intermediate, which is converted to a trans- 2, cis- 6 intermediate. An additional round of -oxi- dation gives cis- 4 enoyl-CoA, which is oxidized to the trans- 2, cis- 4 species by acyl-CoA dehydrogenase. The subsequent action of 2,4-dienoyl-CoA reductase yields the trans- 3 product, which is converted by enoyl-CoA isomerase to the trans- 2 form. Normal -oxida- tion then produces five molecules of acetyl-CoA.

795

796 Chapter 24

 

Fatty Acid Catabolism

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

H

 

 

 

 

O

O2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCoA + E

 

 

 

 

 

 

C

 

 

 

 

 

SCoA + E

 

 

 

 

 

FAD + H2O2

RCH2CH2

 

C

 

 

FAD

 

RC

 

 

C

 

 

 

FADH2

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

FIGURE 24.25 The acyl-CoA oxidase reaction in peroxisomes.

24.5 Other Aspects of Fatty Acid Oxidation

Peroxisomal -Oxidation Requires FAD-Dependent Acyl-CoA Oxidase

Although -oxidation in mitochondria1 is the principal pathway of fatty acid catabolism, several other minor pathways play important roles in fat catabolism. For example, organelles other than mitochondria carry out -oxidation processes, including peroxisomes and glyoxysomes. Peroxisomes are so named because they carry out a variety of flavin-dependent oxidation reactions, regenerating oxidized flavins by reaction with oxygen to produce hydrogen peroxide, H2O2. Peroxisomal -oxidation is similar to mitochondrial -oxidation, except that the initial double bond formation is catalyzed by an FAD-depen- dent acyl-CoA oxidase (Figure 24.25). The action of this enzyme in the peroxisomes transfers the liberated electrons directly to oxygen instead of the electron transport chain. As a result, each 2-carbon unit oxidized in peroxisomes produces fewer ATPs. The enzymes responsible for fatty acid oxidation in peroxisomes are inactive with carbon chains of eight or fewer. Such short-chain products must be transferred to the mitochondria for further breakdown. Similar -oxidation enzymes are also found in glyoxysomes—peroxisomes in plants that also carry out the reactions of the glyoxylate pathway.

Branched-Chain Fatty Acids and -Oxidation

Although -oxidation is universally important, there are some instances in which it cannot operate effectively. For example, branched-chain fatty acids with alkyl branches at odd-numbered carbons are not effective substrates for-oxidation. For such species, -oxidation is a useful alternative. Consider phytol, a breakdown product of chlorophyll that occurs in the fat of ruminant animals such as sheep and cows and also in dairy products. Ruminants oxidize phytol to phytanic acid, and digestion of phytanic acid in dairy products is thus an important dietary consideration for humans. The methyl group at C-3 will block -oxidation, but, as shown in Figure 24.26, phytanic acid -hydroxylase places an OOH group at the -carbon, and phytanic acid -oxidase decarboxylates it to yield pristanic acid. The CoA ester of this metabolite can undergo-oxidation in the normal manner. The terminal product, isobutyryl-CoA, can be sent into the TCA cycle by conversion to succinyl-CoA.

Refsum’s Disease Is a Result of Defects in -Oxidation

The -oxidation pathway is defective in Refsum’s disease, an inherited metabolic disorder that results in defective night vision, tremors, and other neurologic abnormalities. These symptoms are caused by accumulation of phytanic acid in the body. Treatment of Refsum’s disease requires a diet free of chloro-

1Beta oxidation does not occur significantly in plant mitochondria.

FIGURE 24.26

24.5 Other Aspects of Fatty Acid Oxidation

797

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

(CH

 

 

 

 

CH2

 

 

CH2

 

 

CH2 )3

 

 

 

 

C

CH

 

 

 

CH2OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phytol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COO

 

CH3

 

 

 

(CH

 

 

 

 

CH2

 

 

CH2

 

 

CH2 )3

 

 

 

 

 

 

CH

 

 

CH2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phytanic acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H2O

 

 

 

 

Phytanic acid α -hydroxylase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

(CH

 

 

 

 

CH2

 

 

CH2

 

 

CH2 )3

 

 

 

 

CH

 

CH

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2

 

 

 

 

Phytanic acid α -oxidase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

(CH

 

 

 

 

CH2

 

 

CH2

 

 

CH2 )3

 

 

 

 

 

CH

 

C

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pristanic acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ATP

 

+ CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AMP + P P

Acyl-CoA synthase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

O

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(CH

 

 

 

 

 

CH2

 

 

 

 

CH2

 

 

CH2 )3

 

 

 

 

 

CH

 

C

 

 

 

 

SCoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Six cycles of β -oxidation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCoA +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

CH

 

 

C

CH3

 

C

 

 

 

SCoA

 

 

 

CH3

CH2

 

C

 

SCoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isobutyryl-CoA

 

 

 

 

 

 

3 Acetyl-CoA

 

 

 

 

 

 

 

 

 

 

3 Propionyl-CoA

phyll, the precursor of phytanic acid. This regimen is difficult to implement because all green vegetables and even meat from plant-eating animals, such as cows, pigs, and poultry, must be excluded from the diet.

-Oxidation of Fatty Acids Yields Small

Amounts of Dicarboxylic Acids

In the endoplasmic reticulum of eukaryotic cells, the oxidation of the terminal carbon of a normal fatty acid—a process termed -oxidation—can lead to the synthesis of small amounts of dicarboxylic acids (Figure 24.27). Cytochrome P-450, a monooxygenase enzyme that requires NADPH as a coenzyme and uses O2 as a substrate, places a hydroxyl group at the terminal carbon. Subsequent oxidation to a carboxyl group produces a dicarboxylic acid. Either end can form an ester linkage to CoA and be subjected to -oxidation, producing a

Branched-chain fatty acids are oxidized by -oxidation, as shown for phytanic acid. The product of the phytanic acid oxidase, pristanic acid, is a suitable substrate for normal -oxidation. Isobutyryl-CoA and propionyl-CoA can both be converted to suc- cinyl-CoA, which can enter the TCA cycle.

COO

(CH2)10

CH3

ω -oxidation

COO

(CH2)10

COO

FIGURE 24.27 Dicarboxylic acids can be formed by oxidation of the methyl group of fatty acids in a cytochrome P-450–dependent reaction.

798 Chapter 24 Fatty Acid Catabolism

variety of smaller dicarboxylic acids. (Cytochrome P-450–dependent monooxygenases also play an important role as agents of detoxication, the degradation and metabolism of toxic hydrocarbon agents.)

24.6 Ketone Bodies

Ketone Bodies Are a Significant Source of

Fuel and Energy for Certain Tissues

Most of the acetyl-CoA produced by the oxidation of fatty acids in liver mitochondria undergoes further oxidation in the TCA cycle, as stated earlier. However, some of this acetyl-CoA is converted to three important metabolites: acetone, acetoacetate, and -hydroxybutyrate. The process is known as ketogenesis, and these three metabolites are traditionally known as ketone bodies, in spite of the fact that -hydroxybutyrate does not contain a ketone function. These three metabolites are synthesized primarily in the liver but are important sources of fuel and energy for many peripheral tissues, including brain, heart, and skeletal muscle. The brain, for example, normally uses glucose as its source of metabolic energy. However, during periods of starvation, ketone bodies may be the major energy source for the brain. Acetoacetate and 3-hydroxybutyrate are the preferred and normal substrates for kidney cortex and for heart muscle.

Ketone body synthesis occurs only in the mitochondrial matrix. The reactions responsible for the formation of ketone bodies are shown in Figure 24.28. The first reaction—the condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA—is catalyzed by thiolase, which is also known as acetoacetylCoA thiolase or acetyl-CoA acetyltransferase. This is the same enzyme that carries out the thiolase reaction in -oxidation, but here it runs in reverse. The second reaction adds another molecule of acetyl-CoA to give -hydroxy- -methyl- glutaryl-CoA, commonly abbreviated HMG-CoA. These two mitochondrial matrix reactions are analogous to the first two steps in cholesterol biosynthesis, a cytosolic process, as we shall see in Chapter 25. HMG-CoA is converted to acetoacetate and acetyl-CoA by the action of HMG-CoA lyase in a mixed aldol-Claisen ester cleavage reaction. This reaction is mechanistically similar to the reverse of the citrate synthase reaction in the TCA cycle. A membranebound enzyme, -hydroxybutyrate dehydrogenase, then can reduce acetoacetate to -hydroxybutyrate.

Acetoacetate and -hydroxybutyrate are transported through the blood from liver to target organs and tissues, where they are converted to acetyl-CoA (Figure 24.29). Ketone bodies are easily transportable forms of fatty acids that move through the circulatory system without the need for complexation with serum albumin and other fatty acid–binding proteins.

Ketone Bodies and Diabetes Mellitus

Diabetes mellitus is the most common endocrine disease and the third leading cause of death in the United States, with approximately 6 million diagnosed cases and an estimated 4 million more borderline but undiagnosed cases. Diabetes is characterized by an abnormally high level of glucose in the blood. In type I diabetes (representing 10% or fewer of all cases), elevated blood glucose results from inadequate secretion of insulin by the islets of Langerhans in the pancreas. Type II diabetes (at least 90% of all cases) results from an insensitivity to insulin. Type II diabetics produce normal or even elevated levels of insulin, but owing to a shortage of insulin receptors (Chapter 34), their cells

24.6 Ketone Bodies

799

O

2 CH3C CoA

 

 

 

CoA

 

 

 

 

 

Thiolase

 

 

 

 

 

 

 

 

 

 

 

 

CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CoA

 

 

 

CH3C

 

 

CH2

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

O

 

Acetoacetyl-CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H2O + CH3C

 

CoA

 

 

 

 

 

HMG-CoA synthase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

O

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CoA

 

C

 

CH2

 

C

 

 

 

 

CH2

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

β -Hydroxy-β -methylglutaryl-CoA (HMG-CoA)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HMG-CoA lyase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CoA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

CH3C

 

CH2

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acetoacetate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β -Hydroxybutyrate dehydrogenase

CO2

 

 

 

 

 

 

 

NADH

 

 

 

NAD+

 

 

 

 

 

+

H+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

H

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

CH3

 

C

 

CH3

CH3

 

 

C

 

CH2

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acetone

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β -Hydroxybutyrate

FIGURE 24.28 The formation of ketone bodies, synthesized primarily in liver mitochondria.

are not responsive to insulin. In both cases, transport of glucose into muscle, liver, and adipose tissue is significantly reduced, and, despite abundant glucose in the blood, the cells are metabolically starved. They respond by turning to increased gluconeogenesis and catabolism of fat and protein. In type I diabetes, increased gluconeogenesis consumes most of the available oxaloacetate, but breakdown of fat (and, to a lesser extent, protein) produces large amounts of acetyl-CoA. This increased acetyl-CoA would normally be directed into the TCA cycle, but, with oxaloacetate in short supply, it is used instead for production of unusually large amounts of ketone bodies. Acetone can often be detected on the breath of type I diabetics, an indication of high plasma levels of ketone bodies.

H

CH3 C CH2 C OO

OH

β -Hydroxybutyrate

NAD+ NADH + H+

β -Hydroxybutyrate

dehydrogenase

O

CH3C CH2 C OO

Acetoacetate

Succinyl-CoA

β -Ketoacyl-CoA

transferase

Succinate

O O

CH3C CH2 C CoA

Acetoacetyl-CoA

CoA

CoA

Thiolase

O

CH3C CoA

2 Acetyl-CoA

FIGURE 24.29 Reconversion of ketone bodies to acetyl-CoA in the mitochondria of many tissues (other than liver) provides significant metabolic energy.

800 Chapter 24 Fatty Acid Catabolism

PROBLEMS

1.Calculate the volume of metabolic water available to a camel through fatty acid oxidation if it carries 30 lb of triacylglycerol in its hump.

2.Calculate the approximate number of ATP molecules that can be obtained from the oxidation of cis-11-heptadecenoic acid to CO2 and water.

3.Phytanic acid, the product of chlorophyll that causes problems for individuals with Refsum’s disease, is 3,7,11,15-tetramethyl hexadecanoic acid. Suggest a route for its oxidation that is consistent with what you have learned in this chapter. (Hint: The methyl group at C-3 effectively blocks hydroxylation and normal -oxi- dation. You may wish to initiate breakdown in some other way.)

4.Even though acetate units, such as those obtained from fatty

acid oxidation, cannot be used for net synthesis of carbohydrate in animals, labeled carbon from 14C-labeled acetate can be found

in newly synthesized glucose (for example, in liver glycogen) in

animal tracer studies. Explain how this can be. Which carbons of glucose would you expect to be the first to be labeled by 14C-

labeled acetate?

5.What would you expect to be the systemic metabolic effects of consuming unripened akee fruit?

6.Overweight individuals who diet to lose weight often view fat in negative ways because adipose tissue is the repository of excess caloric intake. However, the “weighty” consequences might be even worse if excess calories were stored in other forms. Consider a person who is 10 lb “overweight,” and estimate how much more he or she would weigh if excess energy were stored in the form of carbohydrate instead of fat.

7.What would be the consequences of a deficiency in vitamin B12 for fatty acid oxidation? What metabolic intermediates might accumulate?

8.Write properly balanced chemical equations for the oxidation to CO2 and water of (a) myristic acid, (b) stearic acid, (c) - linolenic acid, and (d) arachidonic acid.

9.How many tritium atoms are incorporated into acetate if a molecule of palmitic acid is oxidized in 100% tritiated water?

10.What would be the consequences of a carnitine deficiency for fatty acid oxidation?

11.Based on the mechanism for the methylmalonyl-CoA mutase (Figure 24.21), write reasonable mechanisms for the reactions shown below.

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

OOC

 

 

 

 

 

 

 

 

 

 

 

CH2

 

 

 

 

 

OOC

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

C

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH

 

COO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COO

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

CH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

H H2O

 

 

 

 

C

 

 

OH

 

 

CH3

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

H

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2

 

 

 

 

CH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H H2O

 

 

 

 

 

 

C

 

 

 

H

 

 

 

CH2

 

C

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

OH

 

H

 

 

 

O

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

CH2

 

 

 

 

 

 

 

 

C

 

H NH4

 

C

 

H

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH3

OH

 

 

 

 

O

Соседние файлы в предмете Химия