Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
154
Добавлен:
15.08.2013
Размер:
841.99 Кб
Скачать

11.38

 

 

 

 

SECTION 11

 

TABLE 11.18 Relative Selectivity of Various Counter Anions

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative

Relative

 

 

 

 

 

selectivity for

selectivity for

 

Counterion

 

 

Dowex 1-X8 resin

Dowex 2-X8 resin

 

 

 

 

 

 

 

OH

 

 

 

 

1.0

1.0

Benzenesulfonate

 

 

500

75

 

 

Salicylate

 

 

 

450

65

 

 

 

Citrate

 

 

 

220

23

 

 

 

 

 

175

17

I

 

 

 

 

Phenate

 

 

 

110

27

 

 

 

HSO

 

 

 

 

85

15

4

 

 

 

ClO

3

 

 

 

74

12

NO 3

 

 

 

65

8

Br

 

 

 

50

6

CN

 

 

 

28

3

HSO

 

 

 

 

27

3

3

 

 

 

BrO

3

 

 

 

27

3

NO 2

 

 

 

24

3

Cl

 

 

 

 

22

2.3

ClO

4

 

 

 

20

 

SCN

 

 

 

 

8.0

 

 

 

 

 

 

HCO

 

 

 

 

6.0

1.2

3

 

 

 

 

 

 

 

5.5

0.5

IO3

 

 

 

 

H PO2

 

 

 

 

5.0

0.5

4

 

 

 

Formate

 

 

 

4.6

0.5

 

 

 

Acetate

 

 

 

3.2

0.5

 

 

 

Propanoate

 

 

 

2.6

0.3

 

 

 

F

 

 

 

 

1.6

0.3

 

 

 

 

 

 

 

exchange behavior of a cation because they do not take account of

the influence of the aqueous

phase. More specific information about the behavior to be expected from a cation in a column elution

 

experiment is given by the equilibrium distribution coefficient

 

 

 

 

K

d .

The partitioning of the potassium ion between the resin and solution phases is described by the

concentration distribution ratio,

D c :

 

 

 

 

 

 

 

(D c )K

[K ]r

 

 

[K ]

 

 

 

Combining the equations for the selectivity coefficient and for

 

 

 

 

D

c :

 

(D c )K

kK/H

[H ]r

 

 

[H ]

 

 

The foregoing equation reveals that essentially the concentration distribution ratio for trace concentrations of an exchanging ion is independent of the respective solution of that ion and that the uptake of each trace ion by the resin is directly proportional to its solution concentration. However, the

 

 

 

 

 

 

 

PRACTICAL LABORATORY INFORMATION

 

 

 

 

 

11.39

concentration distribution ratios are inversely proportional to the solution concentration of the resin

 

counterion.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To

accomplish any separation of two cations (or two anions), one of these ions

must

be taken

 

up by the resin in distinct preference to the other. This preference is expressed by

the separation

 

factor (or relative retention),

 

K/Na, using K

 

 

and Na

 

as the example:

 

 

 

 

 

 

 

 

 

K/Na

(D c )K

 

kK/H

K

 

 

 

 

 

 

 

 

 

 

 

 

(D c )Na

kNa/H

K/Na

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The more

deviates from unity for a given pair of ions, the easier it will be to separate them. If the

 

selectivity coefficient is unfavorable for the separation of two ions of the same charge, no variation

 

in

the concentration of H

 

(the eluant) will improve the separation.

 

 

 

 

 

 

 

 

The situation is entirely different if the exchange involves ions of different net charges. Now the

 

separation factor does depend on the eluant concentration. For example, the more dilute the coun-

 

terion concentration in the eluant, the more selective the exchange becomes for the ion of higher

 

charge.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In practice, it is more convenient to predict the behavior of an ion, for any chosen set of condi-

 

tions, by employing a much simpler distribution coefficient,

 

 

 

 

 

 

 

 

D

g , which is defined as the concentration

 

of

a

solute in

the resin phase divided by

its

concentration in

the

liquid

phase, or:

 

 

 

 

 

 

 

 

 

 

 

 

 

D g

 

concentration

of solute,

resin phase

 

 

 

 

 

 

 

 

 

 

 

concentration of solute, liquid phase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D g

 

% solute within exchanger

volume of solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%

solute within

solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mass of exchanger

 

D

g

remains constant over a wide range of resin to liquid ratios. In a relatively short time, by simple

 

equilibration of small known amounts of resin and solution followed by analysis of the phases, the

 

distribution of solutes may be followed under many different sets of experimental conditions. Var-

 

iables requiring investigation include the capacity and percent cross-linkage of resin,

the type of

 

resin itself, the temperature, and the concentration and pH of electrolyte in the equilibrating solution.

 

 

 

By comparing the ratio of the distribution coefficients for a pair of ions, a separation factor (or

 

relative retention) is

obtained for a specific experimental condition.

 

 

 

 

 

 

 

 

 

 

 

 

Instead of using

D g , separation data may be expressed in terms of a volume distribution coefficient

 

D v , which is defined as the amount of solution in the exchanger per cubic centimeter of resin bed

 

divided by the amount per cubic centimeter in the liquid phase. The relation between

 

 

 

 

D g and

D v is

given by:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D v D g

 

 

 

 

 

 

where

is the bed density of a column expressed in the units of mass of dry resin per cubic centimeter

 

of column. The bed density can be determined by adding a known weight of dry resin to a graduated

 

cylinder containing the eluting solution. After the resin has swelled to its maximum, a direct reading

 

of

the

settled

volume of resin is recorded.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intelligent inspection of the relevant distribution coefficients will show whether a separation is

 

feasible and what the most favorable eluant concentration is likely to be. In the columnar mode, an

 

ion, even if not eluted, may move down the column a considerable distance and with the next eluant

 

may

appear in

the eluate

much earlier

than

indicated by the coefficient in

the

first eluant alone. A

 

11.40

 

 

 

 

 

 

SECTION

11

 

 

 

 

 

 

 

 

distribution coefficient value of 12 or lower is required to elute an ion completely from a column

 

 

 

containing about 10 g of dry resin using 250 to 300 mL of eluant. A larger volume of eluant is

 

 

 

required only when exceptionally strong tailing occurs. Ions may be eluted completely by 300 to

 

 

 

 

 

400 mL of eluant from a column of 10 g of dry resin at

 

 

 

 

 

 

 

 

 

D g values of around 20. The first traces of

an element will appear in the eluate at around 300 mL when its

 

 

 

 

 

 

 

D g

value is about 50 to 60.

Example

Shaking 50 mL of 0.001

M cesium salt solution with 1.0 g of a strong cation exchanger

 

 

in the H-form (with a capacity of 3.0 mequiv · g

 

 

 

 

 

1 ) removes the following amount of cesium. The

 

selectivity coefficient,

 

k Cs/H , is 2.56, thus:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Cs ]r [H ]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.56

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Cs ][H ]r

 

 

 

 

 

 

 

 

 

 

The maximum

amount of cesium which can enter the resin is 50 mL

 

 

 

 

 

 

 

 

 

0.001

M

0.050 equiv.

The minimum

value of [H

 

]r 3.00

0.05

2.95 mequiv, and the maximum value, assuming

 

complete exchange of cesium ion for hydrogen ion, is 0.001

 

 

 

 

 

 

 

 

 

 

M

. The

minimum

value of

the distri-

bution ratio is:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.56)(2.95)

 

 

 

 

 

 

 

 

 

 

[Cs ]r

 

 

 

 

 

 

 

 

 

(D c )Cs

 

 

 

 

 

 

 

 

 

 

 

7550

 

 

 

 

 

 

 

 

 

 

 

 

0.001

 

 

 

 

 

 

 

 

[Cs ]

 

 

 

 

 

 

 

 

 

 

 

 

 

Amount of Cs, resin phase

(7550)(1.0 g)

 

 

151

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amount of Cs, solution phase

 

 

 

 

 

 

 

 

 

 

 

 

50 mL

 

 

 

 

 

 

Thus, at equilibrium the 1.0 g of resin removed is:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100%

x

151

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with all but 0.66% of cesium ions from solution. If the amount of resin were increased to 2.0 g, the

 

 

 

amount of cesium remaining in solution would decrease to 0.33%, half the former value. However,

 

 

 

 

 

if the depleted solution were decanted and placed in contact wit

 

 

 

 

 

 

 

h 1

g of

fresh resin, the

amount of

cesium remaining in solution would decrease to 0.004%. Two batch equilibrations would effectively

 

 

 

 

 

remove the

cesium from the

solution.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в папке Lange's Handbook of Chemistry (15th Edition)