
Astruc D. - Modern arene chemistry (2002)(en)
.pdf

594 16 Molecular Switches and Machines Using Arene Building Blocks
Fig. 27. Sacrificial mechanism.
a back electron transfer process from the uncomplexed reduced A1 to Pþ (Step 4) takes place with consequent restoration of the electron-acceptor character to the A1 station. (d) Nuclear reset: back movement of the BPP34C10 from the A2 to the A1 station (Step 5). Unfortunately, in this mechanism, the back electron transfer process (Step 2) is faster than the ring displacement process (Step 3). Therefore, the intramolecular mechanism does not allow this system to behave as a molecular-level abacus. Figure 27 illustrates an alternative sacrificial mechanism, which is based on the following four operations: (a) Destabilization of the stable translational isomer (Step 6); this is the same as Step 1 mentioned in the intramolecular mechanism. (b) Ring displacement: after scavenging of the oxidized photoactive unit, a suitable reductant Red is added to the solution to react with the oxidized photoactive unit Pþ (Step 7). The back electron transfer reaction is thus quenched and the BPP34C10 ring moves from the reduced A1 to A2 (Step 8). (c) Electronic reset: the electron-acceptor power of the A1 station can be restored by oxidizing the reduced A1 with a suitable oxidant Ox (Step 9). (d) Nuclear reset (Step 10). Experiments have shown [19] that the photochemically driven switching of this molecular-level abacus-like system can be successfully accomplished in solution by means of this sacrificial mechanism.
16.8
Chemically Switchable Pseudorotaxanes
We have developed a number of these supramolecular machine-like systems in collaboration with the Balzani group, and have used them to perform logic functions. An example is presented in the next section. Figure 28 illustrates the chemical switching [20a] of the [2]pseudorotaxane [8I39]2þ, which incorporates a p-electron-deficient unit (diazapyrenium dication) in its thread-like component 392þ and two p-electron-rich units (DNP) in the crown ether 1/5-DN38C10 (8). Since the thread-like component 392þ forms adducts




|
|
|
References |
599 |
|
|
|
|
|
|
J. P. White, D. J. Williams, Chem. Eur. J. |
|
Soc. 1997, 119, 10641–10651; b) P. R. |
|
|
1997, 3, 152–170. |
|
Ashton, R. Ballardini, V. Balzani, I. |
|
12 |
a) M. Asakawa, P. R. Ashton, S. Iqbal, |
|
Baxter, A. Credi, M. C. T. Fyfe, M. T. |
|
|
J. F. Stoddart, N. D. Tinker, A. J. P. |
|
Gandolfi, M. Go´mez-Lo´pez, M.-V. |
|
|
White, D. J. Williams, Chem. Commun. |
|
Martinez-Dı´az, A. Piersanti, N. |
|
|
1996, 483–486; b) M. Asakawa, S. Iqbal, |
|
Spencer, J. F. Stoddart, M. Venturi, |
|
|
J. F. Stoddart, N. D. Tinker, Angew. |
|
A. J. P. White, D. J. Williams, J. Am. |
|
|
Chem. Int. Ed. Engl. 1996, 35, 976–978. |
|
Chem. Soc. 1998, 120, 11932–11942. |
|
13 |
a) P. L. Anelli, N. Spencer, J. F. |
17 |
a) R. Ballardini, V. Balzani, M. T. |
|
|
Stoddart, J. Am. Chem. Soc. 1991, 113, |
|
Gandolfi, L. Prodi, M. Venturi, D. |
|
|
5131–5133; b) P. R. Ashton, R. A. Bis- |
|
Philp, H. G. Ricketts, J. F. Stoddart, |
|
|
sell, N. Spencer, J. F. Stoddart, M. S. |
|
Angew. Chem. Int. Ed. Engl. 1993, 32, |
|
|
Tolley, Synlett 1992, 914–918; c) P. R. |
|
1301–1303; b) S. Chia, J. Cao, J. F. |
|
|
Ashton, R. A. Bissell, R. Go´rski, D. |
|
Stoddart, J. I. Zick, Angew. Chem. Int. |
|
|
Philp, N. Spencer, J. F. Stoddart, M.S. |
|
Ed. 2001, 40, 2447–2451. |
|
|
Tolley, Synlett 1992, 919–922; d) P. R. |
18 |
a) P. R. Ashton, V. Balzani, O. Kocian, |
|
|
Ashton, R. A. Bissell, N. Spencer, J. F. |
|
L. Prodi, N. Spencer, J. F. Stoddart, J. |
|
|
Stoddart, M. S. Tolley, Synlett, 1992, |
|
Am. Chem. Soc. 1998, 120, 11190–11191; |
|
|
923–926; e) P. L. Anelli, M. Asakawa, |
|
b) P. R. Ashton, R. Ballardini, V. |
|
|
P. R. Ashton, R. A. Bissell, G. Clavier, |
|
Balzani, E. C. Constable, A. Credi, O. |
|
|
R. Go´rski, A. E. Kaifer, S. J. Langford, |
|
Kocian, S. J. Langford, L. Prodi, J. A. |
|
|
G. Mattersteig, S. Menzer, D. Philp, |
|
Preece, E. R. Schofield, N. Spencer, |
|
|
A. M. Z. Slawin, N. Spencer, J. F. |
|
J. F. Stoddart, S. Wenger, Chem. Eur. J. |
|
|
Stoddart, M. S. Tolley, D. J. Williams, |
|
1998, 4, 2413–2422. |
|
|
Chem. Eur. J. 1997, 3, 1113–1135. |
19 |
P. R. Ashton, R. Ballardini, V. Balzani, |
|
14 |
R. A. Bissell, E. Co´rdova, A. E. Kaifer, J. |
|
A. Credi, R. Dress, E. Ishow, O. Kocian, |
|
|
F. Stoddart, Nature 1994, 369, 133–137. |
|
J. A. Preece, N. Spencer, J. F. Stoddart, |
|
15 |
a) J. O. Jeppesen, J. Perkins, J. Becher, J. |
|
M. Venturi, S. Wenger, Chem. Eur. J. |
|
|
F. Stoddart, Angew. Chem. Int. Ed. 2001, |
|
2000, 6, 3558–3574. |
|
|
40, 1216–1221; b) Y. Luo, C. P. Collier, |
20 |
a) R. Ballardini, V. Balzani, A. Credi, |
|
|
J. O. Jeppesen, K. A. Nielsen, E. |
|
M. T. Gandolfi, S. J. Langford, S. |
|
|
DeIonno, G. Ho, J. Perkins, H.-R. |
|
Menzer, L. Prodi, J. F. Stoddart, M. |
|
|
Tseng, T. Yamamoto, J. F. Stoddart, |
|
Venturi, D. J. Williams, Angew. Chem. |
|
|
J. R. Heath, ChemPhysChem 2002, in |
|
Int. Ed. Engl. 1996, 35, 978–981; b) V. |
|
|
press. |
|
Balzani, A. Credi, S. J. Langford, F. M. |
|
16 |
a) P. R. Ashton, R. Ballardini, V. |
|
Raymo, J. F. Stoddart, M. Venturi, J. |
|
|
Balzani, M. Go´mez-Lo´pez, S. E. |
|
Am. Chem. Soc. 2000, 122, 3542–3543. |
|
|
Lawrence, M.-V. Martı´nez-Dı´az, M. |
21 |
A. Credi, V. Balzani, S. J. Langford, |
|
|
Montali, A. Piersanti, L. Prodi, J. F. |
|
J. F. Stoddart, J. Am. Chem. Soc. 1997, |
|
|
Stoddart, D. J. Williams, J. Am. Chem. |
|
119, 2679–2681. |


