Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Astruc D. - Modern arene chemistry (2002)(en)

.pdf
Скачиваний:
77
Добавлен:
15.08.2013
Размер:
17.3 Mб
Скачать

16.7 The Evolution of Photochemically Driven Molecular Switches 593

Fig. 25. The synthesis of the [2]rotaxane 37 4PF6 by the slippage approach.

obtain the photoinduced abacus-like movement of the BPP34C10 ring between the two stations.

An intramolecular mechanism, which is illustrated in Figure 26, is based on the following four operations: (a) Destabilization of the stable translational isomer: a photoinduced electron transfer from the photoactive stopper P to the A1 station (Step 1), which is encircled by the BPP34C10 ring, in order to destabilize the p-p stacking interaction between the ring component and the A1 station. (b) Ring displacement: the BPP34C10 moves from the reduced A1 to A2 (Step 2) as a result of destabilization of the p-p stacking interactions between the ring component and the A1 station. This step competes with the back electron transfer process from the reduced A1 to the oxidized photoactive unit Pþ (Step 3). (c) Electronic reset:

Fig. 26. Intramolecular mechanism.

594 16 Molecular Switches and Machines Using Arene Building Blocks

Fig. 27. Sacrificial mechanism.

a back electron transfer process from the uncomplexed reduced A1 to Pþ (Step 4) takes place with consequent restoration of the electron-acceptor character to the A1 station. (d) Nuclear reset: back movement of the BPP34C10 from the A2 to the A1 station (Step 5). Unfortunately, in this mechanism, the back electron transfer process (Step 2) is faster than the ring displacement process (Step 3). Therefore, the intramolecular mechanism does not allow this system to behave as a molecular-level abacus. Figure 27 illustrates an alternative sacrificial mechanism, which is based on the following four operations: (a) Destabilization of the stable translational isomer (Step 6); this is the same as Step 1 mentioned in the intramolecular mechanism. (b) Ring displacement: after scavenging of the oxidized photoactive unit, a suitable reductant Red is added to the solution to react with the oxidized photoactive unit Pþ (Step 7). The back electron transfer reaction is thus quenched and the BPP34C10 ring moves from the reduced A1 to A2 (Step 8). (c) Electronic reset: the electron-acceptor power of the A1 station can be restored by oxidizing the reduced A1 with a suitable oxidant Ox (Step 9). (d) Nuclear reset (Step 10). Experiments have shown [19] that the photochemically driven switching of this molecular-level abacus-like system can be successfully accomplished in solution by means of this sacrificial mechanism.

16.8

Chemically Switchable Pseudorotaxanes

We have developed a number of these supramolecular machine-like systems in collaboration with the Balzani group, and have used them to perform logic functions. An example is presented in the next section. Figure 28 illustrates the chemical switching [20a] of the [2]pseudorotaxane [8I39], which incorporates a p-electron-deficient unit (diazapyrenium dication) in its thread-like component 39and two p-electron-rich units (DNP) in the crown ether 1/5-DN38C10 (8). Since the thread-like component 39forms adducts

16.8 Chemically Switchable Pseudorotaxanes 595

Fig. 28. Amine/acid-controlled dethreading/rethreading cycle of [2]pseudorotaxane [8I39].

[39 2Me(CH2)5NH2]with n-hexylamine, addition of this amine induces the dethreading of [2]pseudorotaxane [8I39]. This process is quantitatively reversible upon the addition of trifluoroacetic acid (TFA). The changes in the absorption and fluorescence spectra allow the on/o switching to be easily monitored.

The same phenomenon was probed [20b] in the chemical switching (Figure 29) of the [2]catenane 40. It incorporates BPP34C10 and a tetracationic cyclophane, comprising a bipyridinium and a diazapyrenium unit. X-ray crystallographic analysis revealed that the BPP34C10 exclusively encircles the diazapyrenium ring system in the solid state. The 1H NMR spectrum ([D6]acetone, 193 K) of the [2]catenane 40shows the signals for two coconformations in a ratio of 96:4. The major isomer corresponds to the same co-conformation

Fig. 29. A chemically switchable [2]catenane 40.

59616 Molecular Switches and Machines Using Arene Building Blocks

as that observed in the solid state. The diazapyrenium unit is located inside the cavity of the BPP34C10 and the bipyridinium unit is positioned ‘‘alongside’’. Since n-hexylamine can form adducts [40 Me(CH2)5NH2]with the diazapyrenium ring system, the equilibrium between the two co-conformations can be displaced in favor of the isomer having the diazapyrenium ring system alongside the cavity of BPP34C10. The di erential pulse voltammogram (MeCN, 298 K) of the [2]catenane 40shows two peaks at 0.31 mV and 0.57 mV vs. SCE for the monoelectronic reduction of the alongside bipyridinium unit and of the inside diazapyrenium ring system, respectively. After the addition of n-hexylamine, the first peak shifts by 60 mV to a potential that corresponds to the monoelectronic reduction of a bipyridinium unit encircled by the BPP34C10. Similarly, the second peak shifts by 20 mV to a potential that is associated with the monoelectronic reduction of a diazapyrenium ring system interacting with n-hexylamine. Protonation of n-hexylamine occurs upon addition of CF3SO3H. As a result, the adducts formed between the n-hexylamine and the diazapyrenium unit of the [2]catenane are destroyed, restoring the original equilibrium between the two co-conformations associated with [2]catenane 40.

16.9

Molecule-Based XOR Logic Gate

The chemical dethreading and rethreading actions of a [2]pseudorotaxane can be used to perform logic operations at the supramolecular level [21]. The [2]pseudorotaxane [41I39]shows an exclusive OR (XOR) gate with the corresponding truth table shown in Figure 30. This logic gate can be controlled by the consecutive additions of CF3SO3H and tributylamine, the two di erent input signals, and the result can be read by monitoring the fluo-

Fig. 30. A molecule-based logic gate controlled by acid/base inputs.

References 597

rescence associated with the 2,3-dihydroxynaphthalene ring system, the output signal. In its free form, the macrocyclic polyether 41 shows a fluorescent band at 343 nm. In MeCN, the 343 nm fluorescence band of 41 is quenched as a result of the formation of a strong p-p stacking complex, namely the [2]pseudorotaxane [41I39](Input: NO/NO, Output: NO). Upon addition of CF3SO3H, the [2]pseudorotaxane [41I39]dissociates as a result of the formation of the fluorescent complex [41 H](Input: YES/NO, Output: YES). Similarly, the addition of tributylamine to the solution of the [2]pseudorotaxane [41I39]induces the release of the fluorescent macrocycle 41 and the formation of the charge-transfer complex [39 2nBu3N](Input: NO/YES, Output: YES). However, the simultaneous addition of CF3SO3H and tributylamine to the solution of the [2]pseudorotaxane [41I39]does not change the complexation between macrocycle 41 and diazapyrenium 39(Input: YES/YES, Output: NO).

16.10

Conclusions

This collection of case histories gives little more than a flavor for how we have used arene building blocks in our research to construct molecular switches that are already finding their way into electronic devices. Hopefully, they will give the reader a feeling for the opportunities that we believe now exist to assemble molecular machinery on a grander and grander scale from readily available arene building blocks. However, many issues remain to be tackled, not least of all, how the motor-molecules that have been shown to operate incoherently in solution can be made to run cooperatively in unison on surfaces and inside solids.

References

1For reviews and monographs on molecular switches and machines, see: a) J. F. Stoddart, Chem. Aust. 1992, 59,

576–577 and 581; b) M. Go´mez-Lo´pez, J. A. Preece, J. F. Stoddart, Nanotechnology 1996, 7, 183–192; c) M. Go´mez-Lo´pez, J. F. Stoddart, Bull. Soc. Chim. Belg. 1997, 106, 491–500; d) V. Balzani, M. Go´mez-Lo´pez, J. F.

Stoddart, Acc. Chem. Res. 1998, 31, 405– 414; e) L. Fabbrizzi, M. Licchelli, P. Pallavicini, Acc. Chem. Res. 1999, 32, 846–853; f ) M. Irie, Chem. Rev. 2000, 100, 1685–1716; g) Y. Yokoyama, Chem. Rev. 2000, 100, 1717–1739; h) G. Berkovic, V.

Krongauz, V. Weiss, Chem. Rev. 2000, 100, 1741–1753; i) B. L. Feringa, R. A. van Delden, N. Koumura, E. M.

Geertsema, Chem. Rev. 2000, 100, 1789– 1816; j) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int.

Ed. 2000, 39, 3348–3391; k) T. R. Kelly, J. P. Sestelo, Structure and Bonding 2001,

99, 19–54; l) L. Raehm, J.-P. Sauvage,

Structure and Bonding 2001, 99, 55–78; m)

A. R. Pease, J. F. Stoddart, Structure and Bonding 2001, 99, 189–236; n) C. Bustamante, D. Keller, G. Oster, Acc. Chem. Res. 2001, 34, 412–420; o) A. N. Shipway, I. Willner, Acc. Chem. Res. 2001, 34, 421–432; p) A. R. Pease, J. O. Jeppesen, J. F. Stoddart, Y. Luo, C. P. Collier, J. R. Heath, Acc. Chem. Res. 2001, 34, 433–444; q) R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, M. Venturi, Acc. Chem. Res. 2001, 34, 445– 455; r) A. Harada, Acc. Chem. Res. 2001,

34, 456–464; s) C. A. Schalley, K. Beizai, F. Vo¨gtle, Acc. Chem. Res. 2001, 34, 465– 476; t) J.-P. Collin, C. DietrichBuchecker, P. Gavin˜a, M. C. JimenezMolero, J.-P. Sauvage, Acc. Chem. Res.

598 16 Molecular Switches and Machines Using Arene Building Blocks

2001, 34, 477–487; u) V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini,

Acc. Chem. Res. 2001, 34, 488–493; v) S. Shinkai, M. Ikeda, A. Sugasaki, M. Takeuchi, Acc. Chem. Res. 2001, 34, 494– 503; w) B. L. Feringa, Acc. Chem. Res.

2001, 34, 504–513; x) T. R. Kelly, Acc. Chem. Res. 2001, 34, 514–522; y) F. M. Raymo, Adv. Mater. 2002, 14, 401–414; z) B. L. Feringa (Ed.), Molecular Switches, Wiley-VCH, Weinheim, 2001.

2 B. L. Allwood, H. Shahriari-Zavareh, N. Spencer, J. F. Stoddart, D. J. Williams,

J. Chem. Soc., Chem. Commun. 1987, 1064–1066.

3B. Odell, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, D. J.

Williams, Angew. Chem. Int. Ed. Engl.

1988, 27, 1547–1550.

4a) P. R. Ashton, T. T. Goodnow, A. E. Kaifer, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, C. Vicent, D. J. Williams, Angew. Chem. Int. Ed. Engl. 1989, 28, 1396–1399; b) P. L. Anelli, P. R. Ashton, R. Ballardini, V. Balzani, M. Delgado, M. T. Gandolfi, T. T. Goodnow, A. E. Kaifer, D. Philp, M. Pietraszkiewicz, L. Prodi, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, C. Vicent, D. J.

Williams, J. Am. Chem. Soc. 1992, 114, 193–218.

5For accounts and reviews on [CaH O] hydrogen bonds, see: a) G. R. Desiraju,

Acc. Chem. Res. 1991, 24, 290–296; b) G. R. Desiraju, Acc. Chem. Res. 1996, 29, 441–449; c) T. Steiner, Chem. Commun.

1996, 727–734; d) I. Berger, M. Egli,

Chem. Eur. J. 1997, 3, 1400–1404; e) K. N. Houk, S. Menzer, S. P. Newton, F. M. Raymo, J. F. Stoddart, D. J. Williams, J. Am. Chem. Soc. 1999, 121, 1479–1487; f )

F. M. Raymo, M. D. Bartberger, K. N. Houk, J. F. Stoddart, J. Am. Chem. Soc.

2001, 123, 9264.

6For accounts and reviews on [p p] stacking interactions, see: a) C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525–5534; b) M. H. Schwartz, J. Inclusion Phenom. 1990, 9, 1–35; c) J. H. Williams, Acc. Chem. Res.

1993, 26, 539–598; d) C. A. Hunter,

Angew. Chem. Int. Ed. Engl. 1993, 32, 1584–1586; e) C. A. Hunter, J. Mol. Biol.

1993, 230, 1025–1054; f ) T. Dahl, Acta Chem. Scand. 1994, 48, 95–116; g) F. Cozzi, J. S. Siegel, Pure Appl. Chem. 1995, 67, 683–689; h) C. G. Claessens, J. F. Stoddart, J. Phys. Org. Chem. 1997, 10, 254–272.

7For accounts and reviews on [CaH p] stacking interactions, see: a) M. Oki, Acc. Chem. Res. 1990, 23, 351–356; b) M. C. Etter, J. Phys. Chem. 1991, 95, 4601–4610; c) M. J. Zaworotko, Chem. Soc. Rev. 1994, 23, 282–288; d) M. Nishio, Y. Umezawa, M. Hirota, Y. Takeuchi, Tetrahedron

1995, 51, 8665–8701; e) M. Nishio, Y.

Umezawa, M. Hirota, Y. Takeuchi, The

[CaH p] Interaction, Wiley-VCH, New

York, 1998.

8P. R. Ashton, V. Balzani, J. Becher, A. Credi, M. C. T. Fyfe, G. Mattersteig, S. Menzer, M. B. Nielsen, F. M. Raymo,

J. F. Stoddart, M. Venturi, A. J. P. White, D. J. Williams, J. Am. Chem. Soc.

1999, 121, 3951–3957.

9a) M. Asakawa, P. R. Ashton, V. Balzani,

A.Credi, C. Hamers, G. Mattersteig, M. Montalti, A. N. Shipway, N. Spencer,

J.F. Stoddart, M. S. Tolley, M. Venturi,

A.J. P. White, D. J. Williams, Angew. Chem. Int. Ed. 1998, 37, 333–337; b) V.

Balzani, A. Credi, G. Mattersteig, O. A. Matthews, F. M. Raymo, J. F. Stoddart, M. Venturi, A. J. P. White, D. J.

Williams, J. Org. Chem. 2000, 65, 1924– 1936; c) C. L. Brown, U. Jonas, J. A. Preece, H. Ringsdorf, M. Seitz, J. F. Stoddart, Langmuir 2000, 16, 1924–1930; d) M. Asakawa, M. Higuchi, G. Mattersteig, T. Nakamura, A. R. Pease, F. M. Raymo, T. Shimizu, J. F. Stoddart,

Adv. Mater. 2000, 12, 1099–1102; e) C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M.

Raymo, J. F. Stoddart, J. R. Heath,

Science 2000, 289, 1172–1175.

10D. B. Amabilino, C. O. DietrichBuchecker, A. Livoreil, L. Pe´rezGarcı´a, J.-P. Sauvage, J. F. Stoddart,

J.Am. Chem. Soc. 1996, 118, 3905– 3913.

11P. R. Ashton, R. Ballardini, V. Balzani,

S.E. Boyd, A. Credi, M. T. Gandolfi, M. Go´mez-Lo´pez, S. Iqbal, D. Philp, J. A. Preece, L. Prodi, H. G. Ricketts, J. F. Stoddart, M. S. Tolley, M. Venturi, A.

 

 

 

References

599

 

 

 

 

 

 

J. P. White, D. J. Williams, Chem. Eur. J.

 

Soc. 1997, 119, 10641–10651; b) P. R.

 

1997, 3, 152–170.

 

Ashton, R. Ballardini, V. Balzani, I.

12

a) M. Asakawa, P. R. Ashton, S. Iqbal,

 

Baxter, A. Credi, M. C. T. Fyfe, M. T.

 

J. F. Stoddart, N. D. Tinker, A. J. P.

 

Gandolfi, M. Go´mez-Lo´pez, M.-V.

 

White, D. J. Williams, Chem. Commun.

 

Martinez-Dı´az, A. Piersanti, N.

 

1996, 483–486; b) M. Asakawa, S. Iqbal,

 

Spencer, J. F. Stoddart, M. Venturi,

 

J. F. Stoddart, N. D. Tinker, Angew.

 

A. J. P. White, D. J. Williams, J. Am.

 

Chem. Int. Ed. Engl. 1996, 35, 976–978.

 

Chem. Soc. 1998, 120, 11932–11942.

13

a) P. L. Anelli, N. Spencer, J. F.

17

a) R. Ballardini, V. Balzani, M. T.

 

Stoddart, J. Am. Chem. Soc. 1991, 113,

 

Gandolfi, L. Prodi, M. Venturi, D.

 

5131–5133; b) P. R. Ashton, R. A. Bis-

 

Philp, H. G. Ricketts, J. F. Stoddart,

 

sell, N. Spencer, J. F. Stoddart, M. S.

 

Angew. Chem. Int. Ed. Engl. 1993, 32,

 

Tolley, Synlett 1992, 914–918; c) P. R.

 

1301–1303; b) S. Chia, J. Cao, J. F.

 

Ashton, R. A. Bissell, R. Go´rski, D.

 

Stoddart, J. I. Zick, Angew. Chem. Int.

 

Philp, N. Spencer, J. F. Stoddart, M.S.

 

Ed. 2001, 40, 2447–2451.

 

Tolley, Synlett 1992, 919–922; d) P. R.

18

a) P. R. Ashton, V. Balzani, O. Kocian,

 

Ashton, R. A. Bissell, N. Spencer, J. F.

 

L. Prodi, N. Spencer, J. F. Stoddart, J.

 

Stoddart, M. S. Tolley, Synlett, 1992,

 

Am. Chem. Soc. 1998, 120, 11190–11191;

 

923–926; e) P. L. Anelli, M. Asakawa,

 

b) P. R. Ashton, R. Ballardini, V.

 

P. R. Ashton, R. A. Bissell, G. Clavier,

 

Balzani, E. C. Constable, A. Credi, O.

 

R. Go´rski, A. E. Kaifer, S. J. Langford,

 

Kocian, S. J. Langford, L. Prodi, J. A.

 

G. Mattersteig, S. Menzer, D. Philp,

 

Preece, E. R. Schofield, N. Spencer,

 

A. M. Z. Slawin, N. Spencer, J. F.

 

J. F. Stoddart, S. Wenger, Chem. Eur. J.

 

Stoddart, M. S. Tolley, D. J. Williams,

 

1998, 4, 2413–2422.

 

Chem. Eur. J. 1997, 3, 1113–1135.

19

P. R. Ashton, R. Ballardini, V. Balzani,

14

R. A. Bissell, E. Co´rdova, A. E. Kaifer, J.

 

A. Credi, R. Dress, E. Ishow, O. Kocian,

 

F. Stoddart, Nature 1994, 369, 133–137.

 

J. A. Preece, N. Spencer, J. F. Stoddart,

15

a) J. O. Jeppesen, J. Perkins, J. Becher, J.

 

M. Venturi, S. Wenger, Chem. Eur. J.

 

F. Stoddart, Angew. Chem. Int. Ed. 2001,

 

2000, 6, 3558–3574.

 

40, 1216–1221; b) Y. Luo, C. P. Collier,

20

a) R. Ballardini, V. Balzani, A. Credi,

 

J. O. Jeppesen, K. A. Nielsen, E.

 

M. T. Gandolfi, S. J. Langford, S.

 

DeIonno, G. Ho, J. Perkins, H.-R.

 

Menzer, L. Prodi, J. F. Stoddart, M.

 

Tseng, T. Yamamoto, J. F. Stoddart,

 

Venturi, D. J. Williams, Angew. Chem.

 

J. R. Heath, ChemPhysChem 2002, in

 

Int. Ed. Engl. 1996, 35, 978–981; b) V.

 

press.

 

Balzani, A. Credi, S. J. Langford, F. M.

16

a) P. R. Ashton, R. Ballardini, V.

 

Raymo, J. F. Stoddart, M. Venturi, J.

 

Balzani, M. Go´mez-Lo´pez, S. E.

 

Am. Chem. Soc. 2000, 122, 3542–3543.

 

Lawrence, M.-V. Martı´nez-Dı´az, M.

21

A. Credi, V. Balzani, S. J. Langford,

 

Montali, A. Piersanti, L. Prodi, J. F.

 

J. F. Stoddart, J. Am. Chem. Soc. 1997,

 

Stoddart, D. J. Williams, J. Am. Chem.

 

119, 2679–2681.

600

Index

a

ab initio calculations

41

 

 

 

absolute configuration

373

 

 

absorption spectroscopy

443, 576

 

acceptor

439

 

 

 

 

 

 

acenaphthenone

28

 

 

 

 

acentricity

198

 

 

 

 

 

 

acepentalene

38, 42

 

 

 

 

acepentalene metal complex 42

 

 

acepentalenediide

42

 

 

 

 

acetal

306

 

 

 

 

 

 

 

acetamide

130

 

 

 

 

 

 

acetic anhydride

12

 

 

 

 

acetyl nitrate

472

 

 

 

 

 

acetylcholine esterase

73

 

 

 

acetylene

171, 172

 

 

 

 

 

Acetylene Chemistry

213

 

 

acetylenic ether

265

 

 

 

 

acetylenic molecular sca olding

213

Acetylenic sca olding

196

 

 

s-acetylide complex

208

 

 

 

acetylsalicylic acid

11

 

 

 

 

acid

475

 

 

 

 

 

 

 

 

acid-catalyzed cyclization

353

 

 

acridine

142

 

 

 

 

 

 

 

acridone

358

 

 

 

 

 

 

acrylonitrile

320

 

 

 

 

 

activation of saturated hydrocarbons

477

Acyclic Diyne Metathesis (ADIMET)

217

acyloxacarbene

259

 

 

 

 

adamantane

8

 

 

 

 

 

 

addition/elimination mechanism

456

adenosine receptor antagonists

76

 

Adler oxidation

550, 560

 

 

 

aggregate

243

 

 

 

 

 

 

aggregation

235

 

 

 

 

 

aggregation-induced planarization

239

agrochemical

92, 117, 364

 

 

air–water interface

235

 

 

 

alcohol

405

 

 

 

 

aldol 20

 

 

 

 

 

aldol trimerization

20

 

alizarin

12

 

 

 

 

alkaline metal salt

452

 

alkaloid

66, 290, 366, 503, 516, 545, 566

alkaloid lignan

480

 

1-alkenylboranes

54

 

1-alkenyl halides

88

 

alkenyne

54

 

 

 

 

alkoxide

 

375, 406

 

 

alkoxo complex

152

 

p-alkoxybenzyl bromide

409

alkoxycarbene

259

 

 

6-alkylaminopurine nucleoside 76

alkyl migration

256

 

alkylidene

218

 

 

 

alkyllithium

336, 349

 

alkyl-substituted benzene

446

alkyne

53, 252

 

 

 

alkyne cyclotrimerization

250

alkyne metathesis

218

 

b-alkynylamines

90

 

all-carbon core

196

 

allenic structure

241

 

allocolchicine

290

 

 

allograft rejection

66

 

allotropes of carbon

181

allylamine

129

 

 

 

243-allyl dendrimer

421

 

allylsilane

554

 

 

 

aluminosilicate

515

 

Alzheimer

74

 

 

 

amaryllidaceae alkaloid

485

amide

108, 129, 337, 339, 406

amido complex

109

 

amidoferrocenyl dendrimer 426

amination

116

 

 

 

amine

405, 457

 

 

Modern Arene Chemistry. Edited by Didier Astruc

Copyright 8 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-30489-4

Index 601

aminocarbene

259

 

aminonaphthalene

531

aminophosphine ligand 96

aminophosphines

381

3-aminopyridazine

74

aminopyridine

73

 

ammonia surrogate

132, 147

ammonium metavanadate 500 ammonium tribromide 550 analgesic 139

ancistrobrevine B 61

o- and p-dichlorobenzenetricarbonylchromium

374

 

 

 

 

 

 

 

androgen

321

 

 

 

 

aniline

113, 115, 298, 457

 

aniline complex

315

 

 

aniline purple

12

 

 

 

anilinotropone

148

 

 

anionic Fries rearrangement

334

anisole

298, 306, 324, 390

 

anisoletricarbonylchromium

372

annelation

18, 185

 

 

annulation

280

 

 

 

annulene

6, 13, 18, 189, 278

[12]annulene

204

 

 

 

[18]annulene

204

 

 

 

anodic oxidation

546

 

 

Anson–Bard equation

424

 

antagonists of the CRH receptor 74

anthracene

 

6, 12, 187, 450, 468

9-anthracene-carboxylic acid

589

anthracycline

280, 286, 564

 

anthracyclinone

286

 

 

anthranilate

358

 

 

 

antiallergic drug

56

 

 

anti-Alzheimer’s drug

499

 

antiaromatic

33

 

 

 

anti-aromaticity

5, 17, 39

 

antibacterial agent

73

 

antibiotic

91, 285, 502, 544

 

anti-epileptic drug

358

 

antigen/antibody binding 435

anti-HIV alkaloid

61

 

 

anti-inflammatory property

67, 139, 388

anti-malaria property

65

 

anti-MRSA activity

91

 

anti-neoplastic agent

76

 

antioxidant

 

546

 

 

 

antitumor agent

138, 285, 519, 546

anxiety

74

 

 

 

 

 

aquaticol

 

544

 

 

 

 

arachidoic acid

67

 

 

arene building blocks

575

 

arene cation radical

478

 

arene donor 461

 

arene donor strength

443

arene planarity 445

 

arene–metal bond 452

arene–metal distance

446

(arene)chromium complex 63 areneselenolate 378 arenetricarbonylchromium complexes 368

arenol

539, 546

 

 

 

 

 

arenoxenium

546

 

 

 

 

arenoxysulfonium ylide

541

 

 

aripiprazole

137

 

 

 

 

aromatic

5

 

 

 

 

 

 

aromatic carbanionic chemistry

331

aromatic carbon–nitrogen bond

108

aromatic cation radical

458

 

 

aromatic chromophore

475

 

 

aromatic CaN bond formation

129

aromatic donor

464

 

 

 

aromatic ether complex

419

 

 

aromatic ion-radical

467

 

 

aromatic nitration

466, 472

 

 

aromatic polyester

99

 

 

 

aromatic steroid

385

 

 

 

aromatic–aromatic coupling

54

aromaticity

5, 39

 

 

 

 

aromatization 171, 172

 

 

aromatization energy 255

 

 

arthritis

11, 67

 

 

 

 

 

aryl amine

506

 

 

 

 

 

aryl bromide

113

 

 

 

 

aryl chloride

13, 55, 84, 93, 124

aryl dialdehyde

60

 

 

 

 

aryl ether

541

 

 

 

 

 

aryl halides

107

 

 

 

 

aryl piperazine

120

 

 

 

N-Arylpiperazine

136

 

 

 

aryl sulfide

 

108

 

 

 

 

 

aryl tosylate

121

 

 

 

 

aryl triflate

 

56, 111, 115

 

 

arylamine

107

 

 

 

 

 

arylamine material

143

 

 

a-arylamino acid

386

 

 

 

aryl–aryl cross coupling

332, 344

arylated tetraethynylethenes

198

arylation

138, 380, 388

 

 

 

arylation of primary alkylamine

138

arylboron compounds

53

 

 

arylcarbene-chromium

250

 

 

arylcyclopropene

268

 

 

 

arylferrocene

63

 

 

 

 

o-arylhydroxylamine

374

 

 

aryloxy carbene

259

 

 

 

arylphosphines

379

 

 

 

602Index

arylpiperazine 381 3-arylpyrrole 89 arylvinamidinium salt 89 asatone 543

ascorbic acid 578 aspirin 11 Astruc 1, 400

Asymmetric Catalysis 538 asymmetric catalyst 529 asymmetric cross-coupling 121 asymmetric induction 527

asymmetric synthesis 64, 188, 524 asymmetric tandem addition 306 atomic force microscopy (AFM) 242

atropisomerism

64, 79, 480, 517

Au(111) surface

579

average valence

4

axial chirality

63, 70, 79

axially chiral biaryl 63

azacrown ether

146

azaindole

73

 

azathioxanthone

358

azide

406, 457

 

azobenzene

142

 

azole

129, 132

 

azulene

6

 

 

b

back electron transfer

466, 589, 594

Baeyer

4

 

 

 

 

ball-milling procedure

98

 

Balzani

576

 

 

 

Barton oxidation

550

 

 

Barton

550, 561

 

 

base catalyst

321

 

 

base-catalyzed isomerization

189

bay-region diol epoxide

58

 

9-BBN

414

 

 

 

 

Benesi–Hildebrand treatment

443

benz[a]anthraquinone

564

 

benzamide

130

 

 

 

benzannulation

250, 251, 277, 566

benzazocinone

360

 

 

1,2-benzazulene

175

 

 

benzene

1, 169, 472

 

 

benzene homologation

278

 

benzenethiolate

457

 

 

benzenoid aromaticity

199

 

benzenoid spacer 211

 

 

benzidine 584

 

 

 

benzimidazole

139

 

 

benzoazocinone

361

 

 

benzo[c]phenanthridine alkaloid 58 benzocyclobutene 12

benzofuran

 

374, 375, 377

 

benzo-fused heterocycle 378

benzoic acid derivative

334

benzopinacol

468

 

 

benzopyrazole

 

107

 

 

o-benzoquinone

 

556

 

 

benzothiophene

 

137

 

 

benzotriazole

134

 

 

benzoxepine

 

270

 

 

benzyl acetate

 

455

 

 

benzyl complex

11

 

 

benzyl radical

 

466

 

 

benzyl silane

347

 

 

benzyl thiolate

 

382

 

 

benzylation activation

404

benzylstannane

466

 

 

Bergman cyclization

171, 186

Berthelot

169, 171, 177, 192

biaryl derivative

 

53, 273, 479

biaryl P,N ligand

136

 

biaryl quinone

 

273

 

 

biaryl synthesis

534, 564

 

biarylisoxazole

 

492

 

 

biarylpyrimidine

492

 

 

bicumene

466

 

 

 

 

bicyclic hydrocarbon

177

 

bicyclo[2.2.2]octenone

558

bimetallic activation 380

 

binaphthalene

 

64

 

 

binaphthol

 

108, 480

 

 

2,20-binaphthol 499

 

 

binaphthyl

 

485

 

 

 

binaphthyl ligand

148

 

binaphthylphosphine

108

 

BINAP 112, 115, 116

 

 

BINAP-ligated palladium

113

bioactive biphenyl

502

 

biocatalyst

 

527

 

 

 

biologically active chemical

56

bioluminescence

72

 

 

biomimetic approach

534

 

biomimetic synthesis

479, 518, 523

bioorganic synthesis

539

 

biosynthesis

 

479

 

 

biosynthetic oxidative dearomatization 563

biphenol 584

 

 

biphenomycine

502

 

biphenylene

12, 185

 

bipyridinium

 

577, 581

 

birefringence

231

 

bis(alkyne)

265

 

1,3-bis(bromomethyl)benzene

581

1,4-bis(bromomethyl)benzene

576

bis(indole)maleimide 493