Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BIOLOGIYa_KLETKI.docx
Скачиваний:
500
Добавлен:
21.05.2015
Размер:
409.12 Кб
Скачать

14.Рибонуклеиновые кислоты, их виды, строение, назначение.

РНК. Строение молекул РНК во многом сходно со строением молекул ДНК. Однако имеется и ряд существенных отличий. В молекуле РНК вместо дезоксирибозы в состав нуклеотидов входит рибоза, вместо тимидилового нуклеотида (Т) — уридило-вый (У). Главное отличие от ДНК состоит в том, что молекула РНК представляет собой одну цепь. Однако ее нуклеотиды способны образовывать водородные связи между собой (например, в молекулах тРНК, рРНК), но в этом случае речь идет о внутри-цепочечном соединении комплементарных нуклеотидов. Цепочки РНК значительно короче ДНК.

В клетке существует несколько видов РНК, которые различаются по величине молекул, структуре, расположению в клетке и функциям:

1. Информационная (матричная) РНК(иРНК). Этот вид наиболее разнороден по размерам и структуре. иРНК представляет собой незамкнутую полинуклеотидную цепь. Она синтезируется в ядре при участии фермента РНК-полимеразы, комплементарнаучастку ДНК, на котором происходит ее синтез. Несмотря на относительно низкое содержание (3—5% РНК клетки), она выполняет важнейшую функцию в клетке: служит в качестве матрицы для синтеза белков, передавая информацию об их структуре с молекул ДНК. Каждь|й белок клетки кодируется специфической иРНК, поэтому число их типов в клетке соответствует числу видов белков.

2. Рибосомная РНК (рРНК). Это одноцепочечные нуклеиновые кислоты, образующие в комплексе с белками рибосомы — орга-неллы, на которых происходит синтез белка. Рибосомные РНК синтезируются в ядре. Информация об их структуре закодирована в участках ДНК, которые расположены в области вторичной перетяжки хромосом. Рибосомные РНК составляют 80% всей РНК клетки, поскольку в клетке имеется огромное количество рибосом. Рибосомные РНК обладают сложной вторичной и третичной структурой, образуя петли на комплементарных участках, что приводит к самоорганизации этих молекул в сложное по форме тело. В состав рибосом входит три типа рРНК у прокариот и четыре типа рРНК у эукариот.

3. Транспортная (трансферная) РНК(тРНК).Молекула тРНК состоит в среднем из 80 нуклеотидов. Содержание тРНК в клетке — около 15% всей РНК. Функция тРНК — перенос аминокислот к месту синтеза белка. Число различных типов тРНК в клетке невелико (20—60). Все они имеют сходную пространственную организацию. Благодаря внутрицепочечным водородным связям молекула тРНК приобретает характерную вторичную структуру, называемую клеверным листам. Трехмерная же модель тРНК выглядит несколько иначе. В тРНК выделяют четыре петли: акцепторную (служит местом присоединения аминокислоты), антикодоновую (узнает кодон в иРНК в процессе трансляции) и две боковые.

15.Органические вещества в клетках, их назначение.

В клетке содержится множество разнообразных органических соединений, разнообразных по структуре и выполняемым функциям. Органические вещества могут быть низкомолекулярными (аминокислоты, сахары, органические кислоты, нуклеотиды, липиды и т.д.) и высокомолекулярными. Большинство высокомолекулярных органических соединений в клетке являются биополимерами. Полимерами называются молекулы, состоящие из большого числа повторяющихся единиц –мономеров, соединенных друг с другом ковалентными связями. К биополимерам, т.е. к полимерам, входящим в состав клетки, относятся белки, полисахариды и нуклеиновые кислоты.

Особую группу органических соединений клетки составляют липиды (жиры и жироподобные вещества). Все они являются гидрофобными соединениями, т.е. нерастворимы в воде, но растворимы в неполярных органических растворителях (хлороформе, бензоле, эфире) К липидам относятся нейтральные жиры, фосфолипиды , воски, стероиды и некоторые другие соединения. Функции липидов в живых организмах разнообразны. Фосфолипиды присутствуют во всех клетках, выполняя структурную функцию в качестве основы биологических мембран. Стероид холестерин является важным компонентом мембран у животных. Нейтральные жиры и некоторые другие липиды обеспечивают энергетическую функцию. Они накапливаются в живых организмах в качестве запасных питательных веществ. При окислении 1 г жира высвобождается 38 кДж энергии, что в два раза больше, чем при окислении такого же количества глюкозы. С энергетической функцией жиров связана их запасающая функция. В виде жира хранится значительная часть энергетического запаса организма. Кроме того, жиры служат источником воды, которая выделяется при его окислении. Это особенно важно для пустынных животных, испытывающих дефицит воды. Например, именно жировые отложения находятся в горбе у верблюда. Для ряда липидов свойственна защитная функция. У млекопитающих подкожный жир выступает в качестве термоизолятора. Воск предохраняет перья и шерсть животных от смачивания. Ряд липидов выполняет в организме регуляторную функцию. Например, гормоны коры надпочечников по своей химической природе являются стероидами. Часть липидов принимают активное участие в обмене веществ, например жирорастворимые витамины А, D, E и K .

Углеводы (сахары, сахариды) представляют собой соединения с общей химической формулой Сn(H2O)n. По количеству звеньев в полимерной цепи различают три основных класса углеводов: моносахариды (простые сахары),олигосахариды (состоят из 2-10 молекул простых сахаров)и полисахариды (состоят более чем из 10 молекул простых сахаров). В зависимости от числа атомов углерода, входящих в состав моносахарида, различают триозы, тетрозы, пентозы, гексозы и гептозы. В природе наиболее распространены гексозы (глюкоза и фруктоза) и пентозы (рибоза идезоксирибоза). Глюкоза является основным источником энергии для клетки, при полном окислении 1 г глюкозы выделяется 17,6 кДж энергии. Рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Из олигосахаридов наиболее часто встречаются дисахариды мальтоза (солодовый сахар), лактоза (молочный сахар), сахароза (свекловичный сахар). Моносахарида и дисахариды хорошо растворимы в воде и обладают сладким вкусом. Полисахариды имеют высокую молекулярную массу, не имеют сладкого вкуса и неспособны растворяться в воде. Они являются биополимерами. К наиболее распространенным в природе полисахаридам относятся полимеры глюкозы крахмал, гликоген и целлюлоза, а такжехитин, состоящий из остатков глюкозамина. Крахмал является основным запасным веществом у растений, гликоген – у животных. Целлюлоза и хитин выполняют защитную функцию, обеспечивая прочность покровов растений, животных и грибов. Таким образом, основные функции углеводов в природе - энергетическая, запасающая и структурная.

Белки– это биополимеры, мономерами которых являются аминокислоты. В образовании белков участвует 20 различных аминокислот. Аминокислоты в молекулах белка соединены ковалентными пептидными связями. В молекулу белка может входить до нескольких тысяч аминокислот. Выделяют 4 уровня пространственной организации молекулы белков. Последовательность аминокислот в полипептидной цепочке называется первичной структурой белка. Первичная структура молекулы любого белка уникальна и определяет его пространственную организацию, свойства и функции в клетке. Вторичная структура белка определяется укладкой цепочки аминокислот в определенные структуры, называемые a-спиралью и b-слоем. Вторичная структура белка формируется за счет водородных связей. Третичная структура образуется при сворачивании полипептидной цепи с элементами вторичной структуры в клубок (глобулу) и поддерживается за счет ионных, гидрофильных и ковалентных (дисульфидных) связей между различными остатками аминокислот. Четвертичная структура характерна для белков, состоящих из нескольких полипептидных цепей. Утрата белковой молекулой своей структурной организации, например вследствие нагревания, называется денатурацией. Денатурация может быть обратимой и необратимой. При обратимой денатурации может нарушаться четвертичная, третичная и вторичная структуры белка, но первичная структура не нарушается, и при возвращении нормальных условий за счет этого возможна ренатурация – восстановление нормальной конфигурации. При нарушении первичной структуры денатурация бывает необратимой.

Важнейшей функцией белков является каталитическая. Все ферменты, биологические катализаторы являются белками. Благодаря ферментам скорость химических реакций в клетке возрастает в миллионы раз. Ферменты высокоспецифичны: каждый фермент катализирует определенный тип химической реакции в клетке. Именно благодаря ферментам возможны все реакции обмена веществ, происходящие в живых организмах.

+ нуклеиновые кислоты!(см.выше вопрос 13)

Соседние файлы в предмете Биология