
- •Введение
- •Часть 1
- •Часть 1. Поиск решений на электронных таблицах
- •Быстрое начало
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Краткий экскурс в теорию
- •Часть 1. Поиск решений на электронных таблицах
- •Поиск решения
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Максимальное Время
- •Число Итераций
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Анализ отчетов
- •Часть 1. Поиск решений на электронных таблицах
- •Отчет по результатам
- •Часть 1. Поиск решений на электронных таблицах
- •Отчет по устойчивости
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Отчет по пределам
- •Часть 1. Поиск решений на электронных таблицах
- •Примеры структуризации задач для исследования систем менеджмента
- •Использование сверхурочных работ
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 1. Поиск решений на электронных таблицах
- •Задачи логического выбора
- •Часть 1. Поиск решений на электронных таблицах
- •1.2. Оптимизация объемов производства изделий
- •1.3. Оптимизация размещения объемов субподрядных работ
- •1.4. Оптимизация размещения рекламы
- •Часть 1. Поиск решений на электронных таблицах
- •1.5. Оценка номенклатуры изделий
- •1.6. Оценка развития производства
- •1.7. Оптимизация ассортимента молочного завода
- •1.8. Составление плана загрузки станков
- •Часть 1. Поиск решений на электронных таблицах
- •1.9. Использование сверхурочных работ
- •1.10. Выбор варианта раскроя
- •2. Задачи смеси
- •2.1. Задача о сплавах
- •Часть 1. Поиск решений на электронных таблицах
- •2.2. Составление кормовой смеси
- •2.3. Производство удобрений
- •Часть 1. Поиск решений на электронных таблицах
- •3. Задачи дисбаланса
- •Часть 1. Поиск решений на электронных таблицах
- •3.5. Минимизация дисбаланса в транспортной системе
- •Часть 1. Поиск решений на электронных таблицах
- •4. Составление «скользящих» графиков
- •Часть 1. Поиск решений на электронных таблицах
- •4.2. Оптимизация использования рабочих
- •5. Задачи оптимизации инвестиций
- •5.1. Оптимизация распределения инвестиций в долгосрочные проекты
- •5.2. Использование инвестиций для реализации контракта
- •5.3. Инвестирование с учетом инфляционных ожиданий
- •Часть 1. Поиск решений на электронных таблицах
- •6.1. Выбор организационно-технических мероприятий -по модернизации производства
- •6.2. Размещение госзаказа по производству изделий
- •Часть 1. Поиск решений на электронных таблицах
- •6.4. Назначение торговых агентов
- •6.5. Выбор варианта хранения нефти
- •Часть 1. Поиск решений на электронных таблицах
- •6.6. Выбор варианта реконструкции предприятия
- •6.7. Выбор плана развития объединения
- •6.8. Распределение капиталовложений
- •Часть 1. Поиск решений на электронных таблицах
- •Часть 2
- •Имитационное моделирование
- •В задачах поиска управленческих
- •Решений
- •Часть 2. Имитационное моделирование
- •Сетевая структура модели
- •Описание элементов модели
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Запуск модели
- •Остановка модели
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Структуры файлов результатов
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Гистограммы
- •Часть 2. Имитационное моделирование
- •Описание модели примера 2
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Датчики случайных чисел
- •Часть 2. Имитационное моделирование
- •Функции
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Запуск и остановка поиска
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Часть 2. Имитационное моделирование
- •Задания по имитационному моделированию систем производственного и операционного менеджмента
- •Участка
- •Задание 3 Модель мойки автомобилей
- •Задание 6
- •Задание 7*
- •Задание 16 Задача о запасных деталях
- •Задание 17* Модель станции технического обслуживания (сто)
- •Задание 19*
- •Задание 20
- •Задание 23*
- •Модель дисбаланса производства комплектующих
- •Для сборки изделий квалифицированными
- •Рабочими
- •Задание 28
- •Литература
- •Содержание
- •Часть 1. Поиск управленческих решений
- •Часть 2. Имитационное моделирование
Часть 1. Поиск решений на электронных таблицах
Быстрое начало
17
Краткий экскурс в теорию
Формулировка любой оптимизационной задачи требует использования некоторой базовой системы понятий.
Любая переменная (изменяемая ячейка в ЭТ) обычно интерпретируется как некоторый ресурс (например, ресурс времени, материала, продукта, валюты), выраженный в количественном измерении (минуты, тонны, штуки, рубли). Задача оптимизации состоит в том, чтобы подобрать такие значения переменных, при которых целевая функция (целевая ячейка ЭТ) принимает максимальное, минимальное или заданное значение (оптимальное значение), при этом найденные значения переменных в совокупности составляют оптимальное решение задачи.
В классическом исследовании операций [1, 4—6] задачи математического программирования делятся на несколько различных типов в зависимости от вида целевой функции и ограничений. К основным типам относятся задачи линейного и нелинейного программирования. Для первого типа характерна целевая функция, линейно зависящая от переменных (ресурсов) исследуемой системы, и такие же линейные ограничения. Если же целевая функция или хотя бы одно из ограничений нелинейно зависит от переменной (хотя бы одной), задача относится к типу нелинейного программирования. В качестве примеров нелинейностей можно привести зависимости видов Xi*Xj, Xi/Xj, log(Xi) (вычисление логарифма от Xi), MIN(Xi,Xj,Xk), Xj2 (квадрат Xj) и т. д. Здесь Xi, Xj — переменные задачи.
Если оптимизационная задача должна решаться в целых числах, когда хотя бы одна из переменных модели должна измеряться в штуках (станках, автобусах и т. п.), говорят о целочисленном программировании. Наконец, если хотя бы одна из переменных может принимать только одно из двух значений (0 или 1), говорят о булевском программировании.
Вычислительные алгоритмы поиска решения для разных классов задач характеризуются разной степенью сложности, наиболее сложными являются задачи целочисленного программирования, к наиболее простым относятся задачи линейного программирования. Класс
задач линейного программирования весьма широк, эти задачи имеют наиболее эффективную реализацию и характеризуются наглядной
экономической интерпретацией результатов. Поэтому любую иссле-дуемую систему желательно привести к линейной модели. К сожалению, это не всегда возможно.
Любой вычислительный алгоритм решения оптимизационной задачи имеет характер итерационного процесса, постепенно (шаг за шагом) приближающегося к оптимальному решению. Такие процессы поиска решения характеризуются точностью вычислений, количеством итераций и временем поиска решения. Все эти характеристики определяются в разделе Параметры окна Поиск решения.
Итерационные процессы поиска должны обладать свойством сходимости вычислений. Это свойство заключается в том, что разность результатов, получаемых на л-ом и (л + 1)-ом шаге вычислений, должна с ростом л стремиться к нулю:
limn->~(Xn+1-Xn) = 0.
Здесь Хп+1, Хп— значения изменяемых ячеек на л-ой и (л + 1)-ой итерации. Практически л ограничивается конкретным значением N — количеством итераций. Количество итераций определяет число шагов d последовательности приближений текущего решения задачи к оптимальному, при этом время, затраченное на реализацию такой последовательности, определяет время поиска оптимального решения. По умолчанию в программе Solver: N = 100.
Точность вычислений оптимального решения задачи определяется количеством значащих цифр в представлении значений изменяемых ячеек Х„. Понятие точности тесно связано с понятием отклонения \XN+1 — Хn, которое может задаваться в процентах от абсолютной величины XN.
Итерационные процессы могут отличаться также методами реали-зации вычислений. Для линейных моделей используется главным образом так называемый симплекс-метод, для нелинейных — метод Ньютона и метод сопряженных градиентов. Они кратко комментируются в разделе «Поиск решения».
Контрольные вопросы
1. Какое предположение целесообразно сделать перед разработкой структуры
ЭТ для решения оптимизационной задачи?
Что такое размерность оптимизационной задай?
Что такое целевая ячейка?
Что такое изменяемые ячейки? .
Чем отличаются зависимые ячейки от ячеек исходных данных?
\
18