Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Betekhtin

.pdf
Скачиваний:
31
Добавлен:
21.05.2015
Размер:
6.89 Mб
Скачать

Раздел V. Кислородные соли (оксисоли)

401

3.Известняки, в зависимости от их состава или физико механических свойств, потребляются: а) химической промышленностью (чистые извест няки) для получения необходимой в сельском хозяйстве извести, производ ства сахара, соды, едкого натра, хлорной извести и пр. с одновременным по лучениемприобжигежидкойилитвердойуглекислоты;б)металлургической промышленностью (бедные фосфором и серой известняки) как флюс при плавке руд в доменных печах; в) для приготовления различных сортов це мента — гашеной извести, портланд цемента, роман цемента и др.; г) в поли графической промышленности, в которой применяются так называемые литографские камни, т. е. особые плотные скрытозернистые известняки с ра ковистым изломом, способные раскалываться на тонкие плиты.

4.Мраморы в полированном виде используются как строительный материал для облицовки стен внутренних помещений в зданиях, как ма териал для скульптурных работ, а также в электротехнике (распредели тельные щиты и др.).

5.Мел употребляется как пишущий красочный, полировальный мате риал, для производства цемента, в лакокрасочной, парфюмерной (зубной порошок), резиновый (наполнитель) и других отраслях промышленности.

АРАГОНИТ — Са[СО3]. Назван по местности Арагония (Испания), где был впервые установлен.

Химический состав такой же, как у кальцита: CaO — 56,0 %, СО2 — 44,0 %. Часто содержит примеси: Sr (до 5,6 %), Mg, Fe и Zn.

Сингония ромбическая; ромбо дипирамидальный в. с. 3L23PC. Пр. гр.

Pmcn(D162h). а0 = 4,94; b0 = 7,94; с0 = 5,72. Кристаллическая структура (см. выше). Облик кристаллов призматический, часто псевдогексагональный, игольчатый. Форма головки кристаллов бывает долотчатой (рис. 216).

Главные формы: призма {110}, пинакоиды {010}f и {001}. Последний бы вает покрыт штрихами параллельно оси а. Нередко встречаются следу ющие формы: призма {011}, заостряющая кристаллы наподобие долота, дипирамида {111}, в некоторых случаях очень острые дипирамиды в ком бинации с призмами, вследствие чего кристаллы принимают копьевид ную форму (рис. 216). Двойники часто наблюдаются по (110). Распрост ранены также тройники псевдогексагонального облика (рис. 217 и 218),

Рис. 216. Призматиче

Рис. 217. Арагонит.

Рис. 218. Границы

ский и игольчатый

Тройник прорастания

срастаний индивидов

кристаллы арагонита

по (110)

в поперечном разрезе

402

Описательная часть

Рис. 219. Арагонитовые геликтиты огибают препятствие (сталагмиты кальцита). Пещера «Зеленая», Хайдаркан (Киргизия). Рисунок В. Слетова

(с обложки I выпуска альбома «Рисуя минералы...»)

четверники и сложные полисинтетические двойники. При этом обычно образуются между гранями призм входящие углы в виде желобков. Не сдвойникованные кристаллы очень редки. Агрегаты часто представлены шестоватыми, радиально лучистыми и звездчатыми срастаниями инди видов. Наблюдается также в виде кристаллических корок, натечных, ша ровидных форм и в массах оолитового строения («гороховые» и «икря ные камни»). Очень оригинальны встречающиеся иногда пещерные образования в виде переплетенных и ветвящихся «стеблей» снежно бе лого цвета (рис. 219). Наконец, внутренние перламутровые части большин ства раковин моллюсков построены из тончайших пластинок арагонита, параллельных поверхности раковины. Как известно, попадающие внутрь раковины песчинки или другие посторонние тела облекаются слоями аналогичной углекислой извести с примесью органического вещества, в результате чего образуются желваки жемчуга.

Цвет арагонита белый, желтовато белый, иногда светло зеленый, фио летовый и серый. Отдельные кристаллы часто прозрачны и бесцветны. Блеск стеклянный, в изломе жирный. В катодных лучах светится слабым бледно фиолетовым, иногда оранжевым цветом. Ng = 1,686, Nm = 1,681 и Np = 1,530.

Твердость 3,5–4. Хрупок. Спайность ясная по {010} и едва заметная по {110} и {011}. Излом часто раковистый. Уд. вес 2,9–3,0 (больше, чем у кальцита, что свидетельствует о более плотной упаковке атомов). Про8 чие свойства. При обычной температуре неустойчив; в присутствии раст ворителя медленно переходит в кальцит, почему и не встречается в более древних осадках. При повышении температуры до 400 °С этот переход совершается быстро. Любопытно, что разности арагонита, не претерпев шие полиморфного превращения в кальцит, содержат более крупные ионы стронция (до нескольких процентов), что, по мнению Р. Ж. Гаюи и Н. В. Белова, оказывает, очевидно, стабилизирующее влияние на ус тойчивость этой модификации. В воде более растворим, чем кальцит.

Диагностические признаки. По цвету и поведению в HCl очень по хож на кальцит, но отличается от него отсутствием спайности по ромбо

Раздел V. Кислородные соли (оксисоли)

403

эдру и обликом кристаллов с характерными, иногда тонкими желобками на гранях призмы и повышенной твердостью. Похожие на него цеолиты (водные силикаты Na, Ca и др.) не выделяют в соляной кислоте СО2. Ви терит и стронцианит имеют больший удельный вес и плавятся перед па яльной трубкой.

П. п. тр. ведет себя так же, как кальцит. В кислотах разлагается с бур ным выделением углекислоты. Порошок арагонита (так же как и строн цианита и витерита) в растворе азотнокислого кобальта при кипячении становится лиловым (реакция Мейгена), тогда как порошок кальцита почти не изменяется или окрашивается в синеватый или зеленоватый цвет, и то лишь при долгом кипячении.

Происхождение и месторождения. Арагонит в природе распростра нен гораздо реже, чем кальцит. Как один из самых низкотемпературных минералов он довольно часто образуется при затухающих гидротермаль ных процессах. Таковы, например, его находки в трещинах среди серпен тинизированных ультраосновных пород вне всякой связи с поверхност ными процессами. К таким же образованиям относятся находки мелких игольчатых кристалликов арагонита в пустотах, среди не затронутых раз ложением базальтов, изредка в мраморах, лавах вулканов, отложениях из горячих, пересыщенных Са[СО3] минеральных источников в виде извест кового туфа или оолитов («гороховый камень» карлововарских источни ков в Чехии) и др.

Однако в главной массе арагонит образуется при различных экзоген ных процессах, часто при участии в них растворенных магнезиальных солей. В виде радиально лучистых образований и натечных форм, неред ко крупных размеров, он широко распространен в коре выветривания ультраосновных магнезиальных изверженных пород в ассоциации с до ломитом, гипсом, глинистым веществом и другими минералами экзоген ного происхождения. Наблюдается в пустотах среди бурых железняков в виде наросших мелких кристалликов и в виде «железных цветов», напри мер в Бакальском месторождении (Ю. Урал), в гипсоносных толщах, мес торождениях самородной серы и др.

МАГНЕЗИТ—Mg[СО3]. Магнезия — область в Фессалии (Греция). Минерал известен с глубокой древности. Синоним: магнезиальный шпат.

Химический состав. MgO — 47,6 %, СО2 — 52,4 %. Из изоморфных примесей наиболее часто устанавливается Fe, иногда Mn, Са.

Сингония тригональная; дитригонально скаленоэдрический в. с. L36 L23РС. Пр. гр. та же, что и кальцита. а0 = 4,584; с0 = 14,92. Кристалличе8 ская структура та же, что у кальцита. Облик кристаллов обычно ромбо эдрический. Чаще распространен в виде крупнозернистых агрегатов (рис. 220). Для месторождений выветривания чрезвычайно характерны фар форовидные скрытокристаллические массы, нередко напоминающие по своей форме цветную капусту.

404

Описательная часть

 

Цвет магнезита белый с желтоватым или серо

 

ватымоттенком,иногдаснежно белый. Блеск стек

 

лянный, в скрытокристаллических агрегатах —

 

восковой. Nm = 1,700 и Np = 1,509.

 

Твердость 4–4,5. Хрупок. Спайность совер

 

 

шенная по ромбоэдру {1011}. Для плотных фар

 

форовидных разностей характерен раковистый

Рис. 220. Мрамороподоб

излом с матовой поверхностью. Уд. вес 2,9–3,1.

Диагностические признаки. В кристалли

ный зернистый агрегат

магнезита. Саткинское

ческих разностях, как и все карбонаты кальци

месторождение

тового ряда, отличим от других минералов по

(Ю. Урал)

ромбоэдрической спайности. Внутри ряда его

 

труднее всего отличить от доломита, анкерита и других карбонатов; при ходится прибегать к оптическим и химическим исследованиям.

П. п. тр. растрескивается, но не плавится. Пламя не окрашивает. В кис лотах растворяется лишь при нагревании. Капля HCl на холоде не вски пает. В горячих кислотах растворяется.

Происхождение и месторождения. Магнезит по сравнению с каль цитом в природе распространен значительно реже, но встречается иногда в больших сплошных массах, представляющих промышленный интерес.

Часть таких скоплений образуется гидротермальным путем. Сюда прежде всего следует отнести весьма крупные месторождения кристал лически зернистых масс магнезита, пространственно связанных с доло митами и доломитизированными известняками. Как показывает геоло гическое изучение, эти залежи образуются метасоматическим путем (среди залежей иногда удавалось установить реликты известняковой фа уны). Предполагают, что магнезия могла выщелачиваться из доломити зированных толщ осадочного происхождения и отлагаться в виде магне зита горячими щелочными растворами. В парагенезисе с магнезитом изредка встречаются типичные гидротермальные минералы.

Скопления скрытокристаллического («аморфного») магнезита возни кают также при процессах выветривания массивов ультраосновных по род, особенно в тех случаях, когда при интенсивном выветривании обра зуется мощная кора продуктов разрушения. В процессе окисления и гидролиза магнезиальные силикаты под влиянием поверхностных вод и углекислоты воздуха претерпевают полное разрушение. Возникающие при этом труднорастворимые гидроокислы железа скопляются у поверх ности. Магний в виде бикарбоната, а также освободившийся кремнезем (в виде золей) опускаются в нижние горизонты коры выветривания. Маг незит, часто обогащенный опалом и доломитом, в виде прожилков и скоп лений натечных форм отлагается в сильно выщелоченных трещиноватых пористых серпентинитах в зоне застоя грунтовых вод.

Наконец, находки магнезита с гидромагнезитом (5MgO . 4CO2 . 5H2O), большей частью минералогического значения, наблюдаются среди оса

Раздел V. Кислородные соли (оксисоли)

405

дочных соленосных отложений. Образование карбонатов магния связы вают с реакцией обменного разложения сульфата магния с Na2[СО3].

Известное Саткинское месторождение кристаллического магнезита гидротермального происхождения находится на западном склоне Южного Урала (в 50 км к юго западу от Златоуста). Укажем также Савинское мес торождение в Ангаро Илимском районе. Крупные магнезитовые залежи образовались здесь метасоматическим путем среди доломитовой осадоч ной толщи докембрийского возраста. Аналогичные месторождения известны на Дальнем Востоке, в Корее, Китае, Чехии, Австрии (Вейтш

вАльпах, южнее Вены) и в других местах.

Кместорождениям, образовавшимся в древней коре выветривания ультраосновных пород, относится Халиловское (Ю. Урал).

Практическое значение. В металлургии «намертво» обожженный кри сталлический магнезит употребляется для изготовления огнеупорных кир пичей, выдерживающих температуру до 3000 °С. Они идут в кладку ниж них частей пода мартеновских печей, конверторов, цементных печей и др. Второй областью применения обожженного магнезита является изготов ление так называемого цемента Сореля, используемого в абразивной про мышленности (точильные круги) и в строительстве (стойкая штукатурка

всмеси с песком, древесными опилками, диатомитом, тальком и другими наполнителями). Употребляется также для производства электроизолято ров, в бумажном, сахарном, резиновом и других производствах.

ДОЛОМИТ — CaMg[CO3]2. Химический состав. CaO — 20,4 %, MgO — 21,7 %, СО2 — 47,9 %. Содержания CaO и MgO часто колеблются в не больших пределах. Изоморфные примеси в дополнение к Mg: Fe2+ при доминировании приводит к другому виду группы доломита — анкериту, иногда Mn2+ (от нескольких процентов до доминирования, в кутногори те), изредка Zn, Ni и Со (в красном доломите из Пршибрама в Чехии со

держание Со[СО3] достигало 7,5%). Известны случаи включений в крис таллах доломита битумов и других посторонних веществ.

Сингония тригональная; ромбоэдрический в. с. L3 C. Пр.

 

 

6

 

гр. R3 (С 2 ). а = 4,822; с = 1б,11 (при отношении Са : Mg =

 

3i

0

0

 

= l : 1,1). Кристаллическая структура отличается тем, что

 

ионы Са и Mg попеременно чередуются вдоль тройной

 

оси. Облик кристаллов. Часто встречающиеся кристал

 

лы имеют ромбоэдрический облик. В противополож

Рис. 221. Крис

ность кальциту широким распространением пользуются

талл доломита с

 

 

седлообразно

ромбоэдры {1011}, причем нередки седлообразно изогну

тые грани (рис. 221) и сферокристаллы с искривленны

изогнутыми

ми поверхностями спайности. Встречаются двойники

гранями

 

прорастания и полисинтетические двойники по (0221). Агрегаты обычно

кристаллически зернистые, часто пористые, реже почковидные, ячеистые, шаровидные и пр.

406 Описательная часть

Цвет доломита серовато белый, иногда с оттенками: желтоватым, бу роватым, зеленоватым. Блеск стеклянный. Nm = 1,681–1,695 и Nр = 1,500– 1,513. В катодных лучах светится ярким оранжево красным цветом.

Твердость 3,5–4. Хрупок. Спайность совершенная по ромбоэдру {1011}. Плоскости спайности большей частью искривлены. Уд. вес. 1,8–2,9.

Диагностические признаки. Как и другие карбонаты кальцитового ряда, доломит характеризуется спайностью по ромбоэдру. Кристаллы до ломита в большинстве случаев также имеют ромбоэдрический облик. В отдельных зернах без данных химического анализа и измерения опти ческих констант невозможно отличить от анкерита, иногда сидерита. Весь

ма характерно, что доломит, в отличие от кальцита, обнаруживает поли

– –

синтетическое двойникование не по (0112), а по (0221). В прозрачных шлифах это направление двойникования устанавливается по короткой диагонали ромбов, образуемых трещинами спайности.

П. п. тр. не плавится, растрескивается. Образующаяся CaO окраши вает пламя в оранжевый цвет. Соляная кислота на холоде разлагает доло мит очень медленно, без «шипения».

Происхождение и месторождения. Доломит наряду с кальцитом яв ляется широко распространенным породообразующим минералом.

Втипичных жильных гидротермальных месторождениях он встреча ется гораздо реже кальцита. При переработке гидротермальными раство рами доломитизированных известняков нередко образуются крупнокри сталлические массы доломита в ассоциации с магнезитом, кальцитом, сульфидами, кварцем и другими минералами.

Главные же массы доломита связаны с осадочными карбонатными тол щами всех геологических периодов, но более всего докембрийского и па леозойского возраста. Доломиты в этих толщах нередко слагают целые массивы или переслаиваются с известняками, иногда наблюдаются в виде не совсем правильных залежей, гнезд и т. д.

Вопрос о деталях их происхождения вызывает большие дискуссии. В на стоящее время в обстановках морских бассейнов доломит не отлагается, но в геологическом прошлом в ряде случаев доломиты образовывались как пер вичные осадки в водных соленосных бассейнах, на что указывает ассоциа ция их с осадками гипса, ангидрита и более растворимыми солями щелочей.

Вдругих случаях, бесспорно, имела место доломитизация ранее отложен ных осадков углекислого кальция: наблюдаются факты замещения доломи том раковин, кораллов и других известковистых органических остатков.

Взоне выветривания доломиты, медленно растворяясь, разрушаются и превращаются в рыхлую тонкозернистую массу.

Месторождения доломита широко распространены вдоль западного и восточного склонов Урала, в Донбассе, на берегах Волги и в других ме стах. Главная масса доломитов приурочена к карбонатным толщам докем брийского и пермского возраста. Большой интерес представляют совре

Раздел V. Кислородные соли (оксисоли)

407

менные процессы доломитообразования в оз. Балхаш (Казахстан), деталь но изучавшиеся в последнее время Н. М. Страховым.

Практическое значение. Доломиты широко используются для раз личных целей: 1) в качестве строительного камня; 2) для изготовления вяжущих веществ, термоизоляционного материала в смеси с асбестом

идр.; 3) в качестве огнеупорного материала и флюса в металлургии; 4) в химической и в ряде других отраслей промышленности.

АНКЕРИТ — Ca(Fe,Mg)[CO3]2 — описывается отдельно, как широко распространенный минерал. Соотношение между Fe и Mg колеблется в широких пределах, так что может достигаться практически полное отсут ствие магния во второй катионной позиции. Содержит также Mn до не скольких процентов. Бедная железом разность называлась бурым шпатом.

Сингония тригональная; ромбоэдрический в. с. Встречается в виде чечевицеобразных кристаллов ромбоэдрического облика, а также в сплош ных зернистых массах, обычно среди кварца в гидротермальных место рождениях сульфидных и сидеритовых руд и в гидротермально изменен ных магнезиально железистых горных породах.

Цвет анкерита белый, серый, часто с различными оттенками. Блеск стеклянный. Для разности с соотношением Fe : Mg = 3 : 1 (FeO, включая

иMnO — 25 % и MgO — 4,8 %): Nm = 1,741 и Np = 1,536.

Твердость 3,5. Уд. вес 2,9–3,1. Спайность по ромбоэдру.

Диагностические признаки. П. п. тр. растрескивается и буреет вслед ствие окисления железа. В кислотах ведет себя так же, как и доломит. Смоченный на холоде 1% ным раствором K3Fe(CN)6, подкисленным не сколькими каплями HCl, дает светло синюю пленку турнбулевой сини (отличие от сидерита).

Месторождения. В больших массах встречается редко. В качестве спутника он наблюдается, например, в сидеритовых рудах Бакальского месторождения, в ряде полиметаллических месторождений Алтая, в свин цово цинковых месторождениях Нагольного кряжа и др. Выделяется обыч но обособленно от сульфидов.

СИДЕРИТ — Fe[СО3]. От греч. сидерос — железо. Синоним: желез ный шпат.

Химический состав. FeO — 62,1 % (Fe — 48,3 %), СО2 — 37,9 %. Из изоморфных примесей чаще всего присутствуют Mg и Mn.

 

Сингония тригональная; дитригонально скаленоэдрический в. с.

 

). a = 4,71; с

= 15,43. Кристаллическая структура

L3L23PC. Пр. гр. R3c(D6

6

3d

0

0

 

аналогична структуре кальцита. Встречающиеся кристаллы чаще имеют ромбоэдрический облик, причем грани ромбоэдра {1011} нередко искрив лены, иногда имеют чешуеобразную поверхность, как у доломита, а также седловидные изгибы. Агрегаты обычно кристаллически зернистые: наблю дается также в шаровидных конкрециях (сферосидерит) со скрытокрис таллическим или радиально лучистым строением. Описаны находки сидерита в землистых массах, натечных, оолитовых и других формах.

408

Описательная часть

Цвет сидерита в свежем состоянии желтовато белый, сероватый, иног да с буроватым оттенком. При выветривании интенсивно буреет. Блеск стеклянный сильный, до алмазного на плоскостях спайности. Nm = 1,875 и Np = 1,633. В катодных лучах светится ярким оранжево красным цветом.

Твердость 3,5–4,5. Хрупок. Спайность по {1011} совершенная. Уд. вес 3,9. Диагностические признаки. Как и всем карбонатам группы кальци та, кристаллическому сидериту свойственна совершенная спайность по ромбоэдру. Характерен алмазный блеск на гранях, характерный коричне ватый или оливковый оттенок и признаки поверхностного ожелезнения на выветрелых образцах. Похож на анкерит, от которого уверенно можно

отличить по данным химических анализов и кривым нагревания.

П. п. тр. не плавится, растрескивается, буреет, затем чернеет (вследствие окисления железа) и становится магнитным. С бурой и фосфорной солью реагирует на железо, а с содой — на марганец (если он содержится). Холод ная HCl действует слабо, но при нагревании очень энергично. Капля ее на куске сидерита постепенно окрашивается в зеленовато желтый цвет вслед ствие образования FeCl3. Смоченный 1% ным раствором красной кровя ной соли — K3Fe(CN)6, подкисленным несколькими каплями HCl, дает на поверхности зерна или куска темно синюю пленку турнбулевой сини (на анкерите при этой реакции образуется светло синяя пленка).

Происхождение и месторождения. Сидерит как карбонат закиси железа вообще может образоваться лишь в восстановительных условиях. Встречается он в различных генетических типах месторождений.

1.В гидротермальных месторождениях он образуется при сравнительно невысоких температурах. Как спутник он наблюдается нередко в жильных месторождениях свинцово цинковых и медных сульфидных руд в ассоциа ции с пирротином, халькопиритом, железистыми хлоритами, анкеритом и другими минералами. Встречаются также самостоятельные сидеритовые жилы, а в известняках — метасоматические залежи неправильных форм. Кроме редких сульфидов, в них иногда наблюдаются магнетит и гематит.

Большой известностью пользуется Бакальское месторождение крис таллически зернистых сидеритов, образовавшихся, по всей вероятности, гидротермальным путем в доломитизированных известняках. Аналогич ные месторождения распространены в Штирии (Альпы) и на побережье Бискайского залива (Испания). Жильные сидеритовые месторождения известны близ Зигена (Германия) и в других местах.

2.Известны типичные осадочные месторождения сидерита, возник шие в лагунах или заливах морских бассейнов. Образование их, очевид но, связано с восстановительными условиями, господствующими в более глубоководных участках прибрежных зон морей, в обстановке недостат ка кислорода и, вероятно, разложения органических остатков с образова нием углекислоты и сероводорода за счет белковых веществ. Осадочные сидеритовые руды иногда обладают типичным оолитовым сложением.

Раздел V. Кислородные соли (оксисоли)

409

Сидерит распространен в корах выветривания Михайловского месторож дения железистых кварцитов.

Часть руд крупнейшего Керченского осадочного месторождения сло жена сидеритами. Возможно, что бурые железняки частично произошли за счет окисления этих руд. Из иностранных месторождений отметим довольно крупные залежи плотного глинистого сферосидерита, окрашен ного углистыми веществами в темный цвет, среди обширных каменно угольных отложений в Шотландии и Южном Уэльсе (Англия).

В условиях зоны окисления месторождений сидерит неустойчив. На месте сидеритовых залежей легко образуются «железные шляпы», состо ящие из лимонита, гётита, иногда гидрогематита как в виде рыхлых, не редко землистых масс, так и в форме твердых жеодовых, часто пустоте лых образований.

Практическое значение. В тех случаях, когда скопления сидерита об наруживаются в крупных массах и содержат мало вредных примесей (фос фора, серы и др.), они представляют собой промышленные месторождения железных руд. Перед плавкой сидеритовые руды подвергаются обжигу.

РОДОХРОЗИТ — Mn[СО3]. От греч. родон — роза, хрос — цвет. На звание указывает на цвет минерала. Синоним: марганцевый шпат.

Химический состав. MnO — 61,7 % (Mn — 47,8 %), СО2 — 38,3 %. Из изо морфных примесей чаще всего устанавливаются Fe, Mg, Ca, изредка Zn и СО.

 

Сингония тригональная: дитригонально скаленоэдрический в. с.

L3

). a

 

= 4,73; с = 15,51. Кристаллическая струк8

3L23PC. Пр. гр. R3c(D6

0

6

3d

 

0

тура аналогична структуре кальцита. В виде хорошо образованных крис

 

таллов наблюдается редко и лишь в пустотах. Обычные формы: {1011} и

{0112},

иногда {0001} и {1120}. Грани часто седлообразно или чечевицеоб

разно изогнуты. Агрегаты обычно кристаллически зернистые, почковид ные и шарообразные с радиально лучистым или сферолитовым строени ем. Встречается в шестоватых агрегатах и в землистых массах.

Цвет кристаллов розовый или малиновый. С увеличением содержа ния кальция окраска бледнеет. На воздухе с течением времени буреет (окисляется). Тонкозернистые и землистые массы обладают белым цве том с едва заметным розовым оттенком. Черта белая. Блеск стеклянный. Nm = 1,817 и Np = 1,597.

Твердость 3,5–4,5. Хрупок. Спайность по ромбоэдру {1011}. Уд. вес 3,6–3,7. Диагностические признаки. В кристаллических массах легко узнает ся по ромбоэдрической спайности, розовому цвету и твердости (царапа

ется острием ножа). Скрытокристаллические и землистые агрегаты бе лого цвета для уверенного определения требуют данных химического или спектрального анализов.

П. п. тр. не плавится, растрескивается, принимает вначале зеленова то серый, а затем черный цвет (вследствие окисления). С бурой и фос форной солью дает реакцию на марганец (в окислительном пламени —

410

Описательная часть

фиолетовый, а в восстановительном — бесцветный перл). В HCl на холо де растворяется медленно, но при нагревании весьма энергично, бурно выделяя углекислоту.

Происхождение и месторождения. Судя по составу железомарганце вых карбонатов, Mn[СО3] с Fe[СО3] дают непрерывный ряд изоморфных смесей. Кларк марганца в земной коре примерно в 50 раз меньше, чем кларк железа. Тем не менее родохрозит встречается в природе самостоятельно.

Вредко встречающихся гидротермальных жильных или метасомати ческих месторождениях марганца родохрозит возникает в ассоциации с сульфидами и силикатами закиси марганца, кристаллизуясь после брау нита, гаусманита, кварца, барита и др. Родохрозит гидротермального про исхождения в ассоциации с пиритом, хлоритами и другими минералами наблюдался в Сапальском месторождении среди мраморизованных изве стняков у г. Нижнего Тагила. В некоторых вольфрамовых месторожде ниях родохрозит иногда встречается в виде жил, генетически связанных

скварцевыми жилами, содержащими гюбнерит (MnWO4) и другие мине ралы (Букука в Забайкалье).

Вгораздо более значительных массах родохрозит распространен в мор ских осадочных месторождениях марганца. Как показывает геологическое изучение, опало родохрозитовые осадки локализовались на некотором уда лении от береговой линии в более глубоких участках бассейнов, где в силу недостатка кислорода при разложении органических остатков, очевидно, создается восстановительная обстановка. Родохрозит в таких месторожде ниях обычно содержит в виде изоморфных примесей Ca, Fe и Mg и ассоции рует с сульфидами железа, манганокальцитом, опалом и др. Как правило, осадочные карбонатные руды марганца обогащены также фосфором.

Родохрозитсодержащие руды в значительных массах известны в оса дочных месторождениях: Чиатурском (Закавказье), Полуночном (Север ный Урал) и др.

Великолепные ярко красные кристаллы крупных размеров поступа ют из проявления Алма на Колорадском плато (США).

Практическое значение. Бедные фосфором гидротермальные родох розитовые руды представляют собой ценное сырье для выплавки ферро марганца. Осадочные карбонатные руды могут быть использованы для подшихтовки при выплавке из железных руд чугунов, а также для хими ческих целей.

СМИТСОНИТ — Zn[СО3]. Синоним: цинковый шпат.

Химический состав. ZnO — 64,8 % (Zn — 52 %), СО2 — 35,2 %. Часто присутствуют в виде изоморфной примеси Fe, Mn, Mg, иногда Со, изред ка Cd, In и др.

Сингония тригональная; дитригонально скаленоэдрический в. с.

L363L23PC. Пр. гр. R3c (D63d). a0 = 4,65; с0 = 14,95. Кристаллическая структу8 ра та же, что у кальцита (см. выше). Редко встречающиеся кристаллы име

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]